Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions
- URL: http://arxiv.org/abs/2208.03392v5
- Date: Sun, 29 Oct 2023 19:32:21 GMT
- Title: Federated Learning for Medical Applications: A Taxonomy, Current Trends,
Challenges, and Future Research Directions
- Authors: Ashish Rauniyar, Desta Haileselassie Hagos, Debesh Jha, Jan Erik
H{\aa}keg{\aa}rd, Ulas Bagci, Danda B. Rawat, and Vladimir Vlassov
- Abstract summary: We focus on medical applications of acFL, particularly in the context of global cancer diagnosis.
Recent developments in acFL have made it possible to train complex machine-learned models in a distributed manner.
- Score: 9.662980267339375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of the IoT, AI, ML, and DL algorithms, the landscape of
data-driven medical applications has emerged as a promising avenue for
designing robust and scalable diagnostic and prognostic models from medical
data. This has gained a lot of attention from both academia and industry,
leading to significant improvements in healthcare quality. However, the
adoption of AI-driven medical applications still faces tough challenges,
including meeting security, privacy, and quality of service (QoS) standards.
Recent developments in \ac{FL} have made it possible to train complex
machine-learned models in a distributed manner and have become an active
research domain, particularly processing the medical data at the edge of the
network in a decentralized way to preserve privacy and address security
concerns. To this end, in this paper, we explore the present and future of FL
technology in medical applications where data sharing is a significant
challenge. We delve into the current research trends and their outcomes,
unravelling the complexities of designing reliable and scalable \ac{FL} models.
Our paper outlines the fundamental statistical issues in FL, tackles
device-related problems, addresses security challenges, and navigates the
complexity of privacy concerns, all while highlighting its transformative
potential in the medical field. Our study primarily focuses on medical
applications of \ac{FL}, particularly in the context of global cancer
diagnosis. We highlight the potential of FL to enable computer-aided diagnosis
tools that address this challenge with greater effectiveness than traditional
data-driven methods. We hope that this comprehensive review will serve as a
checkpoint for the field, summarizing the current state-of-the-art and
identifying open problems and future research directions.
Related papers
- Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AI could soon become routine in clinical practice for disease diagnosis, prognosis, treatment planning, and post-treatment surveillance.
Privacy concerns surrounding patient data present a major barrier to the widespread adoption of AI in medical imaging.
Federated Learning (FL) offers a solution that enables organizations to train AI models collaboratively without sharing sensitive data.
arXiv Detail & Related papers (2024-09-24T16:55:32Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Federated Learning in Healthcare: Model Misconducts, Security, Challenges, Applications, and Future Research Directions -- A Systematic Review [2.710010611878837]
Federated Learning (FL) enables multiple healthcare institutions to collaboratively learn from decentralized data without sharing it.
FL's scope in healthcare covers areas such as disease prediction, treatment customization, and clinical trial research.
implementing FL poses challenges, including model convergence in non-IID data environments, communication overhead, and managing multi-institutional collaborations.
arXiv Detail & Related papers (2024-05-22T16:59:50Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
Foundation models (FMs) are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback.
These models are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data.
arXiv Detail & Related papers (2024-05-10T19:22:24Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
The Internet of things (IoT) can significantly enhance the quality of human life, specifically in healthcare.
The human digital twin (HDT) is proposed as an innovative paradigm that can comprehensively characterize the replication of the individual human body.
HDT is envisioned to empower IoT-healthcare beyond the application of healthcare monitoring by acting as a versatile and vivid human digital testbed.
Recently, generative artificial intelligence (GAI) may be a promising solution because it can leverage advanced AI algorithms to automatically create, manipulate, and modify valuable while diverse data.
arXiv Detail & Related papers (2024-01-22T03:17:41Z) - Towards Smart Healthcare: Challenges and Opportunities in IoT and ML [0.0]
The COVID-19 pandemic and other ongoing health crises have underscored the need for prompt healthcare services worldwide.
This chapter focuses exclusively on exploring the hurdles encountered when integrating machine learning methods into the IoT healthcare sector.
It offers a comprehensive summary of current research challenges and potential opportunities, categorized into three scenarios.
arXiv Detail & Related papers (2023-12-09T10:45:44Z) - Multimodal Federated Learning in Healthcare: a Review [5.983768682145731]
Federated Learning (FL) provides a decentralized mechanism where data need not be consolidated.
This paper outlines the current state-of-the-art approaches to Multimodal Federated Learning (MMFL) within the healthcare domain.
It aims to bridge the gap between cutting-edge AI technology and the imperative need for patient data privacy in healthcare applications.
arXiv Detail & Related papers (2023-10-14T19:43:06Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z) - Privacy-preserving medical image analysis [53.4844489668116]
We present PriMIA, a software framework designed for privacy-preserving machine learning (PPML) in medical imaging.
We show significantly better classification performance of a securely aggregated federated learning model compared to human experts on unseen datasets.
We empirically evaluate the framework's security against a gradient-based model inversion attack.
arXiv Detail & Related papers (2020-12-10T13:56:00Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.