論文の概要: Kernel Biclustering algorithm in Hilbert Spaces
- arxiv url: http://arxiv.org/abs/2208.03675v1
- Date: Sun, 7 Aug 2022 08:41:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 14:14:53.171121
- Title: Kernel Biclustering algorithm in Hilbert Spaces
- Title(参考訳): ヒルベルト空間におけるカーネル・ビクラスタリングアルゴリズム
- Authors: Marcos Matabuena, J.C Vidal, Oscar Hernan Madrid Padilla, Dino
Sejdinovic
- Abstract要約: 我々は,エネルギー距離と平均誤差の最大値という概念を用いて,抽象空間における新しいモデルフリー・ビクラスタリングアルゴリズムを開発した。
提案手法は,既存の文献よりも一般的で複雑なクラスタ形状を学習することができる。
提案手法は,カーネルの適切な選択を前提として,その最適シナリオにおける最先端手法と類似している。
- 参考スコア(独自算出の注目度): 8.303238963864885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biclustering algorithms partition data and covariates simultaneously,
providing new insights in several domains, such as analyzing gene expression to
discover new biological functions. This paper develops a new model-free
biclustering algorithm in abstract spaces using the notions of energy distance
(ED) and the maximum mean discrepancy (MMD) -- two distances between
probability distributions capable of handling complex data such as curves or
graphs. The proposed method can learn more general and complex cluster shapes
than most existing literature approaches, which usually focus on detecting mean
and variance differences. Although the biclustering configurations of our
approach are constrained to create disjoint structures at the datum and
covariate levels, the results are competitive. Our results are similar to
state-of-the-art methods in their optimal scenarios, assuming a proper kernel
choice, outperforming them when cluster differences are concentrated in
higher-order moments. The model's performance has been tested in several
situations that involve simulated and real-world datasets. Finally, new
theoretical consistency results are established using some tools of the theory
of optimal transport.
- Abstract(参考訳): ビクラスタリングアルゴリズムはデータを同時に分割し、新しい生物学的機能を発見するために遺伝子発現を分析するなど、いくつかの領域で新たな洞察を提供する。
本稿では,エネルギー距離 (ED) と最大平均誤差 (MMD) の概念を用いて, 曲線やグラフなどの複雑なデータを扱う確率分布間の2つの距離を, 抽象空間での新しいモデルフリー・ビクラスタリングアルゴリズムを開発した。
提案手法は, 平均および分散差の検出を主眼とした, 既存の文献的アプローチに比べて, より汎用的かつ複雑なクラスター形状を学習できる。
このアプローチの双クラスタリング構成は、ダタムと共変量レベルでの解離構造を作るために制約されているが、結果は競合する。
提案手法は, クラスタ差が高次モーメントに集中する場合に, 適切なカーネル選択を仮定して, 最適シナリオにおける最先端手法と類似している。
モデルのパフォーマンスは、シミュレーションおよび実世界のデータセットを含むいくつかの状況でテストされてきた。
最後に、最適輸送理論のいくつかのツールを用いて、新しい理論整合性結果が確立される。
関連論文リスト
- Maximum Likelihood Estimation on Stochastic Blockmodels for Directed Graph Clustering [22.421702511126373]
我々は、有向ブロックモデルにおいて、基盤となるコミュニティを推定するものとしてクラスタリングを定式化する。
本稿では,2つの効率的かつ解釈可能な有向クラスタリングアルゴリズム,スペクトルクラスタリングアルゴリズム,半定値プログラミングに基づくクラスタリングアルゴリズムを紹介する。
論文 参考訳(メタデータ) (2024-03-28T15:47:13Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Semi-Supervised Clustering via Structural Entropy with Different
Constraints [30.215985625884922]
本稿では,多種多様な制約を組み込んで,分割と階層クラスタリングを両立させる手法であるStructure Entropy (SSE) による半教師付きクラスタリングを提案する。
9つのクラスタリングデータセット上でSSEを評価し,それを11の半教師付きパーティショニングおよび階層クラスタリング手法と比較した。
論文 参考訳(メタデータ) (2023-12-18T04:00:40Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Bregman Power k-Means for Clustering Exponential Family Data [11.434503492579477]
我々は、ブレグマン発散の下でのハードクラスタリングに関する古典的な研究のアルゴリズム的進歩を橋渡しする。
ブレグマン発散のエレガントな性質は、単純で透明なアルゴリズムで閉形式更新を維持できる。
シミュレーション実験の徹底的な実証分析と降雨データに関するケーススタディを考察し,提案手法はガウス以外の様々なデータ設定において,既存のピア手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-06-22T06:09:54Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
観測データと実験データの任意の組み合わせから最適境界を近似する有効なモンテカルロアルゴリズムを開発した。
我々のアルゴリズムは、合成および実世界のデータセットに基づいて広範囲に検証されている。
論文 参考訳(メタデータ) (2021-10-12T02:21:30Z) - Conjugate Mixture Models for Clustering Multimodal Data [24.640116037967985]
マルチモーダルクラスタリングの問題は、データが物理的に異なるセンサーで収集されるたびに発生する。
マルチモーダルクラスタリングは,新しいフレームワーク,すなわち共役混合モデル内で対処できることを示す。
論文 参考訳(メタデータ) (2020-12-09T10:13:22Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Biclustering with Alternating K-Means [5.089110111757978]
本稿では,経験的クラスタリングリスクを最小限に抑えるというアイデアに基づいて,ビクラスタリング問題の新たな定式化について述べる。
カラムと行間のk-meansクラスタリングアルゴリズムの適応バージョンを交互に使用することにより,局所最小値を求める,単純で斬新なアルゴリズムを提案する。
その結果,本アルゴリズムは,データ中の有意義な構造を検知し,様々な設定や状況において競合する2クラスタリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-09-09T20:15:24Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。