Learning Composable Energy Surrogates for PDE Order Reduction
- URL: http://arxiv.org/abs/2005.06549v2
- Date: Fri, 15 May 2020 12:29:19 GMT
- Title: Learning Composable Energy Surrogates for PDE Order Reduction
- Authors: Alex Beatson, Jordan T. Ash, Geoffrey Roeder, Tianju Xue, Ryan P.
Adams
- Abstract summary: We use parametric modular structure to learn component-level surrogates, enabling cheaper high-fidelity simulation.
We use a neural network to model the stored potential energy in a component given boundary conditions.
Composable energy surrogates permit simulation in the reduced basis of component boundaries.
- Score: 28.93892833892805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-materials are an important emerging class of engineered materials in
which complex macroscopic behaviour--whether electromagnetic, thermal, or
mechanical--arises from modular substructure. Simulation and optimization of
these materials are computationally challenging, as rich substructures
necessitate high-fidelity finite element meshes to solve the governing PDEs. To
address this, we leverage parametric modular structure to learn component-level
surrogates, enabling cheaper high-fidelity simulation. We use a neural network
to model the stored potential energy in a component given boundary conditions.
This yields a structured prediction task: macroscopic behavior is determined by
the minimizer of the system's total potential energy, which can be approximated
by composing these surrogate models. Composable energy surrogates thus permit
simulation in the reduced basis of component boundaries. Costly ground-truth
simulation of the full structure is avoided, as training data are generated by
performing finite element analysis with individual components. Using dataset
aggregation to choose training boundary conditions allows us to learn energy
surrogates which produce accurate macroscopic behavior when composed,
accelerating simulation of parametric meta-materials.
Related papers
- A POD-TANN approach for the multiscale modeling of materials and macroelement derivation in geomechanics [0.0]
This paper introduces a novel approach that combines Proper Orthogonal Decomposition (POD) with Thermodynamics-based Artificial Neural Networks (TANN) to capture the macroscopic behavior of complex inelastic systems and derive macroelements in geomechanics.
The results indicate that the POD-TANN approach not only offers accuracy reproducing in the studied responses, but also reduces computational costs, making it a practical tool for the multiscale modeling of heterogeneous inelastic geomechanical systems.
arXiv Detail & Related papers (2024-08-13T19:08:56Z) - Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [1.1016723046079784]
We report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations.
The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs.
The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights.
arXiv Detail & Related papers (2024-04-16T17:24:22Z) - Molecule Design by Latent Prompt Transformer [76.2112075557233]
This work explores the challenging problem of molecule design by framing it as a conditional generative modeling task.
We propose a novel generative model comprising three components: (1) a latent vector with a learnable prior distribution; (2) a molecule generation model based on a causal Transformer, which uses the latent vector as a prompt; and (3) a property prediction model that predicts a molecule's target properties and/or constraint values using the latent prompt.
arXiv Detail & Related papers (2024-02-27T03:33:23Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
In computational chemistry, crystal structure prediction is an optimization problem.
One approach to tackle this problem involves building simulators based on density functional theory (DFT) followed by running search in simulation.
We show that our approach, dubbed LCOMs (latent conservative objective models), performs comparably to the best current approaches in terms of success rate of structure prediction.
arXiv Detail & Related papers (2023-10-16T04:35:44Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Conditional Generative Models for Simulation of EMG During Naturalistic
Movements [45.698312905115955]
We present a conditional generative neural network trained adversarially to generate motor unit activation potential waveforms.
We demonstrate the ability of such a model to predictively interpolate between a much smaller number of numerical model's outputs with a high accuracy.
arXiv Detail & Related papers (2022-11-03T14:49:02Z) - Data-driven multi-scale modeling and robust optimization of composite
structure with uncertainty quantification [0.42581756453559755]
This chapter demonstrates advanced data-driven methods and outlines the capability that must be developed/added for the multi-scale modeling of advanced composite materials.
It proposes a multi-scale modeling method for composite structures based on a finite element method (FEM) simulation driven by surrogate models/emulators.
arXiv Detail & Related papers (2022-10-13T16:40:11Z) - Linking Properties to Microstructure in Liquid Metal Embedded Elastomers
via Machine Learning [0.0]
Liquid metals (LM) are embedded in an elastomer matrix to obtain soft composites with unique thermal, dielectric, and mechanical properties.
By linking the structure to the properties of these materials, it is possible to perform material design rationally.
arXiv Detail & Related papers (2022-07-24T06:02:26Z) - PARC: Physics-Aware Recurrent Convolutional Neural Networks to
Assimilate Meso-scale Reactive Mechanics of Energetic Materials [0.0]
We present the Physics-Aware Recurrent Convolutional (PARC) Neural Network, a deep-learning algorithm capable of learning the mesoscale thermo-mechanics of shock-initiated energetic materials (EM)
We demonstrate that visualizing the artificial neurons at PARC can shed light on important aspects of EM thermos-mechanics and provide an additional lens for conceptualizing EM.
arXiv Detail & Related papers (2022-04-04T14:29:35Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
We develop a new interpretable, multi-resolution machine learning framework for finding patterns in the unit-cells of materials.
Specifically, we propose two new interpretable representations of metamaterials, called shape-frequency features and unit-cell templates.
arXiv Detail & Related papers (2021-11-10T21:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.