論文の概要: PlaneFormers: From Sparse View Planes to 3D Reconstruction
- arxiv url: http://arxiv.org/abs/2208.04307v1
- Date: Mon, 8 Aug 2022 17:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 13:36:22.334851
- Title: PlaneFormers: From Sparse View Planes to 3D Reconstruction
- Title(参考訳): planeformers: スパースビュープレーンから3次元再構成へ
- Authors: Samir Agarwala, Linyi Jin, Chris Rockwell, David F. Fouhey
- Abstract要約: 本稿では,画像の重なりが限定された平面面再構成手法を提案する。
より単純なアプローチであるPlaneFormerを導入し、3次元推論を行うために3D対応平面トークンに変換器を適用する。
- 参考スコア(独自算出の注目度): 14.45228936875838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an approach for the planar surface reconstruction of a scene from
images with limited overlap. This reconstruction task is challenging since it
requires jointly reasoning about single image 3D reconstruction, correspondence
between images, and the relative camera pose between images. Past work has
proposed optimization-based approaches. We introduce a simpler approach, the
PlaneFormer, that uses a transformer applied to 3D-aware plane tokens to
perform 3D reasoning. Our experiments show that our approach is substantially
more effective than prior work, and that several 3D-specific design decisions
are crucial for its success.
- Abstract(参考訳): 本稿では,画像の重なりが限定された平面面再構成手法を提案する。
この再構築作業は,画像間の対応,画像間の相対カメラポーズなど,単一の3次元再構成を共同で推論する必要があるため,困難な作業である。
過去の研究で最適化に基づくアプローチが提案されている。
より単純なアプローチであるPlaneFormerを導入し、3次元推論を行うために3D対応平面トークンに変換器を適用する。
我々の実験は、我々のアプローチが以前の作業よりもはるかに効果的であり、3D特有の設計決定が成功に不可欠であることを示している。
関連論文リスト
- EasyHOI: Unleashing the Power of Large Models for Reconstructing Hand-Object Interactions in the Wild [79.71523320368388]
本研究の目的は,手動物体のインタラクションを単一視点画像から再構築することである。
まず、手ポーズとオブジェクト形状を推定する新しいパイプラインを設計する。
最初の再構築では、事前に誘導された最適化方式を採用する。
論文 参考訳(メタデータ) (2024-11-21T16:33:35Z) - Disjoint Pose and Shape for 3D Face Reconstruction [4.096453902709292]
本稿では,ポーズと形状の相違を解消し,最適化を安定かつ正確にするためのエンドツーエンドパイプラインを提案する。
提案手法は, エンドツーエンドのトポロジ的整合性を実現し, 反復的な顔ポーズ改善を可能とし, 定量的および定性的な結果の両面で顕著な改善を示した。
論文 参考訳(メタデータ) (2023-08-26T15:18:32Z) - Neural 3D Scene Reconstruction from Multiple 2D Images without 3D
Supervision [41.20504333318276]
平面制約下でのスパース深度を用いてシーンを3次元の監督なしに再構成する新しいニューラル再構成法を提案する。
シーンを表すために,符号付き距離関数場,色場,確率場を導入する。
我々は、これらのフィールドを最適化し、2D画像で識別可能な光線マーキングを監督することでシーンを再構築する。
論文 参考訳(メタデータ) (2023-06-30T13:30:48Z) - gSDF: Geometry-Driven Signed Distance Functions for 3D Hand-Object
Reconstruction [94.46581592405066]
我々は手の構造を利用してSDFによる形状復元の指導を行う。
我々は、ポーズ変換のキネマティック連鎖を予測し、SDFを高調波ハンドポーズと整列させる。
論文 参考訳(メタデータ) (2023-04-24T10:05:48Z) - 3D-LatentMapper: View Agnostic Single-View Reconstruction of 3D Shapes [0.0]
視覚変換器(ViT)の中間潜時空間と共同画像テキスト表現モデル(CLIP)を高速かつ効率的なシングルビュー再構成(SVR)に活用する新しいフレームワークを提案する。
本研究ではShapeNetV2データセットを用いてSOTA法との比較実験を行い,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-12-05T11:45:26Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
提案手法では,自然画像に対する基本的エンドツーエンド再構築フレームワークを導入し,正確な地平のポーズが得られない。
そこで,モデルが解の第一の推算を生成するハイブリッド・インバージョン・スキームを適用する。
当社のフレームワークでは,イメージを10ステップでデレンダリングすることが可能で,現実的なシナリオで使用することが可能です。
論文 参考訳(メタデータ) (2022-11-21T17:42:42Z) - Learning Reconstructability for Drone Aerial Path Planning [51.736344549907265]
本研究では,無人ドローンを用いた大規模3次元都市景観獲得のためのビューとパスプランニングを改善するための,学習に基づく最初の再構成可能性予測器を提案する。
従来の手法とは対照的に,本手法では,一組の視点から3次元都市景観をいかによく再構築するかを明示的に予測するモデルを学習する。
論文 参考訳(メタデータ) (2022-09-21T08:10:26Z) - Perspective Reconstruction of Human Faces by Joint Mesh and Landmark
Regression [89.8129467907451]
本研究では,世界空間の3次元顔メッシュを同時に再構築し,画像平面上の2次元顔のランドマークを予測することを提案する。
予測された3Dおよび2Dランドマークに基づいて、6DF (6 Degrees Freedom)フェイスポーズを解決者により容易に推定することができる。
論文 参考訳(メタデータ) (2022-08-15T12:32:20Z) - Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB
Image [32.5277483805739]
単一画像から部屋の囲い3次元構造を再構築することを目的としている。
本稿では,室内のより一般的な仮定,すなわち1つの天井,1つの床,2つの垂直壁からなる部屋配置について考察する。
論文 参考訳(メタデータ) (2021-04-16T09:24:08Z) - Adaptive 3D Face Reconstruction from a Single Image [45.736818498242016]
1枚の画像から3次元の顔形状を適応的に再構成する新しい関節2Dと3Dの最適化法を提案する。
複数のデータセットに対する実験結果から,本手法は1枚のカラー画像から高品質な再構成を実現できることが示された。
論文 参考訳(メタデータ) (2020-07-08T09:35:26Z) - Learning Pose-invariant 3D Object Reconstruction from Single-view Images [61.98279201609436]
本稿では,単視点画像のみから3次元形状を学習する,より現実的な構成について検討する。
最大の難しさは、単一のビューイメージが提供できる制約の不足にある。
本稿では, 対角コンパクトな形状空間を学習するために, 効果的な対角領域混同法を提案する。
論文 参考訳(メタデータ) (2020-04-03T02:47:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。