OL-DN: Online learning based dual-domain network for HEVC intra frame
quality enhancement
- URL: http://arxiv.org/abs/2208.04661v1
- Date: Tue, 9 Aug 2022 11:06:59 GMT
- Title: OL-DN: Online learning based dual-domain network for HEVC intra frame
quality enhancement
- Authors: Renwei Yang, Shuyuan Zhu, Xiaozhen Zheng, and Bing Zeng
- Abstract summary: Convolution neural network (CNN) based methods offer effective solutions for enhancing the quality of compressed image and video.
In this paper, we adopt the raw data in the quality enhancement for the HEVC intra-coded image by proposing an online learning-based method.
Our proposed online learning based dual-domain network (OL-DN) has achieved superior performance, compared with the state-of-the-art methods.
- Score: 24.91807723834651
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolution neural network (CNN) based methods offer effective solutions for
enhancing the quality of compressed image and video. However, these methods
ignore using the raw data to enhance the quality. In this paper, we adopt the
raw data in the quality enhancement for the HEVC intra-coded image by proposing
an online learning-based method. When quality enhancement is demanded, we
online train our proposed model at encoder side and then use the parameters to
update the model of decoder side. This method not only improves model
performance, but also makes one model adoptable to multiple coding scenarios.
Besides, quantization error in discrete cosine transform (DCT) coefficients is
the root cause of various HEVC compression artifacts. Thus, we combine
frequency domain priors to assist image reconstruction. We design a DCT based
convolution layer, to produce DCT coefficients that are suitable for CNN
learning. Experimental results show that our proposed online learning based
dual-domain network (OL-DN) has achieved superior performance, compared with
the state-of-the-art methods.
Related papers
- Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
We propose a novel Contrastive Learning (SCL) and Transformer-based NR-IQA model SaTQA.
We first train a model on a large-scale synthetic dataset by SCL to extract degradation features of images with various distortion types and levels.
To further extract distortion information from images, we propose a backbone network incorporating the Multi-Stream Block (MSB) by combining the CNN inductive bias and Transformer long-term dependence modeling capability.
Experimental results on seven standard IQA datasets show that SaTQA outperforms the state-of-the-art methods for both synthetic and authentic datasets
arXiv Detail & Related papers (2023-12-12T06:01:41Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - ConvNeXt-ChARM: ConvNeXt-based Transform for Efficient Neural Image
Compression [18.05997169440533]
We propose ConvNeXt-ChARM, an efficient ConvNeXt-based transform coding framework, paired with a compute-efficient channel-wise auto-regressive auto-regressive.
We show that ConvNeXt-ChARM brings consistent and significant BD-rate (PSNR) reductions estimated on average to 5.24% and 1.22% over the versatile video coding (VVC) reference encoder (VTM-18.0) and the state-of-the-art learned image compression method SwinT-ChARM.
arXiv Detail & Related papers (2023-07-12T11:45:54Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
We propose an absolute image compression transformer (ICT) for neural image compression (NIC)
ICT captures both global and local contexts from the latent representations and better parameterize the distribution of the quantized latents.
Our framework significantly improves the trade-off between coding efficiency and decoder complexity over the versatile video coding (VVC) reference encoder (VTM-18.0) and the neural SwinT-ChARM.
arXiv Detail & Related papers (2023-07-05T13:17:14Z) - Neural Data-Dependent Transform for Learned Image Compression [72.86505042102155]
We build a neural data-dependent transform and introduce a continuous online mode decision mechanism to jointly optimize the coding efficiency for each individual image.
The experimental results show the effectiveness of the proposed neural-syntax design and the continuous online mode decision mechanism.
arXiv Detail & Related papers (2022-03-09T14:56:48Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z) - Super-Resolving Compressed Video in Coding Chain [27.994055823226848]
We present a mixed-resolution coding framework, which cooperates with a reference-based DCNN.
In this novel coding chain, the reference-based DCNN learns the direct mapping from low-resolution (LR) compressed video to their high-resolution (HR) clean version at the decoder side.
arXiv Detail & Related papers (2021-03-26T03:39:54Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.