Schrieffer-Wolff Transformation on IBM Quantum Computer
- URL: http://arxiv.org/abs/2208.04746v1
- Date: Fri, 5 Aug 2022 17:58:11 GMT
- Title: Schrieffer-Wolff Transformation on IBM Quantum Computer
- Authors: Rukhsan Ul Haq, Basit Iqbal, Mohsin Illahi, Baseer Ahmad, Nazama
- Abstract summary: Schrieffer-Wolff transformation (SWT) has been extensively used in quantum many-body physics.
We implement our quantum algorithm in QisKit and carry out SWT for SIAM on IBM Quantum computers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Schrieffer-Wolff transformation (SWT) has been extensively used in quantum
many-body physics to calculate the low energy effective Hamiltonian. It
provides a perturbative method to comprehend the renormalization effects of
strong correlations in the quantum many-body models. The generator for
Schrieffer-Wolff transformation is calculated usually by heuristic methods.
Recently, a systematic and elegant method for the calculation of this extremely
significant transformation has been reported [1]. Given the huge significance
of SWT for many areas including quantum condensed matter physics, quantum
optics and quantum cavity electrodynamics, it is imperative to develop quantum
algorithm for carrying out SWT on quantum computer. In this paper, we put
forward this quantum algorithm and demonstrate it for single impurity Anderson
model (SIAM), thereby arriving at Kondo model as effective Hamiltonian. We
implement our quantum algorithm in QisKit and carry out SWT for SIAM on IBM
Quantum computers. To the best of our knowledge, this work is the first of its
kind to obtain Kondo model from Anderson impurity model using a quantum
algorithm.
Related papers
- Hamiltonian Encoding for Quantum Approximate Time Evolution of Kinetic
Energy Operator [2.184775414778289]
The time evolution operator plays a crucial role in the precise computation of chemical experiments on quantum computers.
We have proposed a new encoding method, namely quantum approximate time evolution (QATE) for the quantum implementation of the kinetic energy operator.
arXiv Detail & Related papers (2023-10-05T05:25:38Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Perturbation theory with quantum signal processing [0.0]
We provide a quantum algorithm to obtain perturbative energies on quantum computers.
The proposed algorithm uses quantum signal processing (QSP) to achieve this goal.
This work is a first step towards explainable'' quantum simulation on fault-tolerant quantum computers.
arXiv Detail & Related papers (2022-10-03T05:20:26Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum algorithms for Schrieffer-Wolff transformation [4.237239130164727]
The Schrieffer-Wolff transformation aims to solve degenerate perturbation problems.
It describes the low-energy dynamics of the exact Hamiltonian in the low-energy subspace of unperturbed Hamiltonian.
This unitary transformation can be realized by quantum circuits.
arXiv Detail & Related papers (2022-01-31T15:27:57Z) - Reducing circuit depth in adaptive variational quantum algorithms via
effective Hamiltonian theories [8.24048506727803]
We introduce a new transformation in the form of a product of a linear combination of excitation operators to construct the effective Hamiltonian with finite terms.
The effective Hamiltonian defined with this new transformation is incorporated into the adaptive variational quantum algorithms to maintain constant-size quantum circuits.
arXiv Detail & Related papers (2022-01-23T09:38:46Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.