A Model-Constrained Tangent Manifold Learning Approach for Dynamical
Systems
- URL: http://arxiv.org/abs/2208.04995v1
- Date: Tue, 9 Aug 2022 18:42:03 GMT
- Title: A Model-Constrained Tangent Manifold Learning Approach for Dynamical
Systems
- Authors: Hai Van Nguyen, Tan Bui-Thanh
- Abstract summary: Real time accurate solutions of large scale complex dynamical systems are in critical need for control, optimization, uncertainty, and decision-making.
This paper contributes in this direction a model constrained tangent manifold learning (mcTangent) approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real time accurate solutions of large scale complex dynamical systems are in
critical need for control, optimization, uncertainty quantification, and
decision-making in practical engineering and science applications. This paper
contributes in this direction a model constrained tangent manifold learning
(mcTangent) approach. At the heart of mcTangent is the synergy of several
desirable strategies: i) a tangent manifold learning to take advantage of the
neural network speed and the time accurate nature of the method of lines; ii) a
model constrained approach to encode the neural network tangent with the
underlying governing equations; iii) sequential learning strategies to promote
long time stability and accuracy; and iv) data randomization approach to
implicitly enforce the smoothness of the neural network tangent and its
likeliness to the truth tangent up second order derivatives in order to further
enhance the stability and accuracy of mcTangent solutions. Both semi heuristic
and rigorous arguments are provided to analyze and justify the proposed
approach. Several numerical results for transport equation, viscous Burgers
equation, and Navier Stokes equation are presented to study and demonstrate the
capability of the proposed mcTangent learning approach.
Related papers
- Semi-Implicit Neural Ordinary Differential Equations [5.196303789025002]
We present a semi-implicit neural ODE approach that exploits the partitionable structure of the underlying dynamics.
Our technique leads to an implicit neural network with significant computational advantages over existing approaches.
arXiv Detail & Related papers (2024-12-15T20:21:02Z) - Learning Controlled Stochastic Differential Equations [61.82896036131116]
This work proposes a novel method for estimating both drift and diffusion coefficients of continuous, multidimensional, nonlinear controlled differential equations with non-uniform diffusion.
We provide strong theoretical guarantees, including finite-sample bounds for (L2), (Linfty), and risk metrics, with learning rates adaptive to coefficients' regularity.
Our method is available as an open-source Python library.
arXiv Detail & Related papers (2024-11-04T11:09:58Z) - Projected Neural Differential Equations for Learning Constrained Dynamics [3.570367665112327]
We introduce a new method for constraining neural differential equations based on projection of the learned vector field to the tangent space of the constraint manifold.
PNDEs outperform existing methods while requiring fewer hyper parameters.
The proposed approach demonstrates significant potential for enhancing the modeling of constrained dynamical systems.
arXiv Detail & Related papers (2024-10-31T06:32:43Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
We develop an approach that balances these two objectives: the Gaussian Process Switching Linear Dynamical System (gpSLDS)
Our method builds on previous work modeling the latent state evolution via a differential equation whose nonlinear dynamics are described by a Gaussian process (GP-SDEs)
Our approach resolves key limitations of the rSLDS such as artifactual oscillations in dynamics near discrete state boundaries, while also providing posterior uncertainty estimates of the dynamics.
arXiv Detail & Related papers (2024-07-19T15:32:15Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.
This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.
We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - Distributional Gradient Matching for Learning Uncertain Neural Dynamics
Models [38.17499046781131]
We propose a novel approach towards estimating uncertain neural ODEs, avoiding the numerical integration bottleneck.
Our algorithm - distributional gradient matching (DGM) - jointly trains a smoother and a dynamics model and matches their gradients via minimizing a Wasserstein loss.
Our experiments show that, compared to traditional approximate inference methods based on numerical integration, our approach is faster to train, faster at predicting previously unseen trajectories, and in the context of neural ODEs, significantly more accurate.
arXiv Detail & Related papers (2021-06-22T08:40:51Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z) - Physics-informed Spline Learning for Nonlinear Dynamics Discovery [8.546520029145853]
We propose a Physics-informed Spline Learning framework to discover parsimonious governing equations for nonlinear dynamics.
The framework is based on sparsely sampled noisy data.
The efficacy and superiority of the proposed method has been demonstrated by multiple well-known nonlinear dynamical systems.
arXiv Detail & Related papers (2021-05-05T23:32:43Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.