論文の概要: Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits
- arxiv url: http://arxiv.org/abs/2208.05461v1
- Date: Wed, 10 Aug 2022 17:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-01 10:11:29.850021
- Title: Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits
- Title(参考訳): erasure qubits:超伝導回路における$t_1$制限を克服する
- Authors: Aleksander Kubica, Arbel Haim, Yotam Vaknin, Fernando Brand\~ao, Alex
Retzker
- Abstract要約: 振幅減衰時間である$T_phi$は、超伝導回路の量子忠実度を制限する主要な要因として長い間存在してきた。
本稿では、振幅減衰誤差を検出して消去誤差に変換する方法で、量子ビットを設計し、従来のT_phi$制限を克服する手法を提案する。
- 参考スコア(独自算出の注目度): 105.54048699217668
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The amplitude damping time, $T_1$, has long stood as the major factor
limiting quantum fidelity in superconducting circuits, prompting concerted
efforts in the material science and design of qubits aimed at increasing $T_1$.
In contrast, the dephasing time, $T_{\phi}$, can usually be extended above
$T_1$ (via, e.g., dynamical decoupling), to the point where it does not limit
fidelity. In this article we propose a scheme for overcoming the conventional
$T_1$ limit on fidelity by designing qubits in a way that amplitude damping
errors can be detected and converted into erasure errors. Compared to standard
qubit implementations our scheme improves the performance of fault-tolerant
protocols, as numerically demonstrated by the circuit-noise simulations of the
surface code. We describe two simple qubit implementations with superconducting
circuits and discuss procedures for detecting amplitude damping errors,
performing entangling gates, and extending $T_\phi$. Our results suggest that
engineering efforts should focus on improving $T_\phi$ and the quality of
quantum coherent control, as they effectively become the limiting factor on the
performance of fault-tolerant protocols.
- Abstract(参考訳): 振幅減衰時間である$t_1$は、超伝導回路における量子忠実性を制限する主要な要因であり、量子ビットの材料科学と設計に協力して、$t_1$の増加を目指した。
対照的に、dephasing time, $T_{\phi}$は、通常、$T_1$(例えば、動的デカップリング)を超えて、不確実性を制限しない点まで拡張することができる。
本稿では、振幅減衰誤差を検出し、消去誤差に変換する方法として、量子ビットを設計し、従来のT_1$制限を克服する手法を提案する。
標準の量子ビット実装と比較して、このスキームは、表面コードの回路ノイズシミュレーションによって数値的に示されるように、フォールトトレラントプロトコルの性能を向上させる。
超伝導回路を用いた2つの簡単な量子ビット実装について述べるとともに、振幅減衰誤差の検出、エンタングルゲートの実行、およびT_\phi$の拡張手順について議論する。
その結果,t_\phi$ と量子コヒーレント制御の質向上に工学的取り組みを集中させることが,フォールトトレラントプロトコルの性能の制限要因となることが示唆された。
関連論文リスト
- Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Erasure detection of a dual-rail qubit encoded in a double-post
superconducting cavity [1.8484713576684788]
我々は、コンパクトで二重ポストの超伝導キャビティに符号化されたデュアルレール量子ビットを実装した。
我々は,3.981+/-0.003(ms)-1の消去率と,符号空間内における残差の最大0.17(ms)-1を測定する。
論文 参考訳(メタデータ) (2023-11-08T01:36:51Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
量子ビット実装のマルチレベル構造から生じる計算部分空間から漏れること。
パラメトリックフラックス変調を用いた超伝導量子ビットの資源効率向上のためのユニバーサルリーク低減ユニットを提案する。
繰り返し重み付け安定化器測定におけるリーク低減ユニットの使用により,検出されたエラーの総数を,スケーラブルな方法で削減できることを実証した。
論文 参考訳(メタデータ) (2023-09-13T16:21:32Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
誤り訂正符号は、フォールトトレラントな量子論理ステップを実現するために、マルチキュービットの測定を使用する。
超伝導トランスモン量子ビット間の多体相互作用に基づく非従来型表面コードの解析を行う。
このアプローチの基盤となる多体効果にもかかわらず、論理的欠点を推定すると、この設計は従来の設計に比べて少なくとも現実的な雑音に対して堅牢である可能性が示唆されている。
論文 参考訳(メタデータ) (2022-11-11T18:00:30Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
超伝導フラクソニウム量子ビットは、大規模量子コンピューティングへの道のトランスモンに代わる有望な代替手段を提供する。
マルチキュービットデバイスにおける大きな課題は、スケーラブルなクロストークのないマルチキュービットアーキテクチャの実験的なデモンストレーションである。
ここでは、可変カプラ素子を持つ2量子フッソニウム系量子プロセッサを提案する。
論文 参考訳(メタデータ) (2022-03-30T13:44:52Z) - Unimon qubit [42.83899285555746]
超伝導量子ビットは、量子コンピュータを実装する最も有望な候補の1つである。
本稿では,高非線形性,dc電荷雑音に対する完全な感度,フラックス雑音に対する感度,共振器内の1つのジョセフソン接合のみからなる単純な構造を結合した超伝導量子ビット型ユニモンについて紹介し,実演する。
論文 参考訳(メタデータ) (2022-03-11T12:57:43Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
固定周波数トランスモン量子ビット間の残差$ZZ$相互作用を完全にキャンセルする手法を実際に示す。
2ビットのエンタングリング位相と$Z$相関を計測し,キャンセル性能を検証した。
提案手法は,各qubit-qubit接続の独立アドレナビリティを実現し,可変および可変の両カウンタに適用可能である。
論文 参考訳(メタデータ) (2021-11-26T02:04:49Z) - Arbitrary controlled-phase gate on fluxonium qubits using differential
ac-Stark shifts [1.8568045743509223]
強アンハーモニックフラキソニウム量子ビットの相互作用に対する資源効率制御を示す。
本結果は,次世代量子プロセッサの設計において,トランスモンよりも強アンハーモニック回路の利点を示すものである。
論文 参考訳(メタデータ) (2021-03-08T00:02:56Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
本稿では、非相互デバイスと、基底空間が2倍縮退し、基底状態がGottesman-Kitaev-Preskill(GKP)符号の近似符号であるジョセフソン接合からなる回路設計について述べる。
この回路は、電荷やフラックスノイズなどの超伝導回路の一般的なノイズチャネルに対して自然に保護されており、受動的量子誤差補正に使用できることを示唆している。
論文 参考訳(メタデータ) (2020-02-18T16:45:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。