Linear optical universal quantum gates with higher success probabilities
- URL: http://arxiv.org/abs/2208.06600v3
- Date: Thu, 17 Nov 2022 07:31:23 GMT
- Title: Linear optical universal quantum gates with higher success probabilities
- Authors: Wen-Qiang Liu and Hai-Rui Wei
- Abstract summary: We construct two compact quantum circuits to implement post-selected controlled-phase-flip (CPF) gate and Toffoli gate.
Linear optical implementations of the presented two universal gates are feasible under current technology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Universal quantum gates lie at the heart of designing quantum computer. We
construct two compact quantum circuits to implement post-selected
controlled-phase-flip (CPF) gate and Toffoli gate with linear optics assisted
by one and two single photons, respectively. The current existing maximum
success probability of 1/4 for linear optical CPF gate is achieved by resorting
to an ancillary single photon rather than an entangled photon pair or two
single photons. Remarkably, our Toffoli gate is accomplished with current
maximum success probability of 1/30 without using additional entangled photon
pairs and the standard decomposition-based approach. Linear optical
implementations of the presented two universal gates are feasible under current
technology and provide a potential application in large-scale optical quantum
computing.
Related papers
- Heralded High-Dimensional Photon-Photon Quantum Gate [4.602787223342753]
A major obstacle for realizing quantum gates between two individual photons is the restriction of direct interaction between photons in linear media.
We present a protocol for realizing an entangling gate -- the controlled phase-flip (CPF) gate -- for two photonic qudits in arbitrary dimension.
We experimentally demonstrate this protocol by realizing a four-dimensional qudit-qudit CPF gate, whose decomposition would require at least 13 two-qubit entangling gates.
arXiv Detail & Related papers (2024-07-23T10:00:12Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Refined quantum gates for $\Lambda$-type atom-photon hybrid systems [3.1273732288852716]
We present protocols for realizing controlled-not (CNOT), Fredkin, and Toffoli gates on hybrid systems.
The first control qubit of our gates is encoded on a flying photon, and the rest qubits are encoded on the atoms in optical cavity.
These quantum gates can be extended to the optimal synthesis of multi-qubit CNOT, Fredkin and Toffoli gates.
arXiv Detail & Related papers (2022-10-19T14:42:09Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Universal quantum multi-qubit entangling gates with auxiliary spaces [0.0]
We present an effective quantum circuit for the implementation of a controlled-NOT (CNOT) gate.
The method is extended to the construction of a general n-control-qubit Toffoli gate with (2n-1) qubit-qudit gates and (2n-2) single-qudit gates.
Based on the presented quantum circuits, the polarization CNOT and Toffoli gates with linear optics are designed by operating on the spatial-mode degree of freedom of photons.
arXiv Detail & Related papers (2021-05-22T03:30:22Z) - Heralded non-destructive quantum entangling gate with single-photon
sources [5.881327681338198]
We demonstrate a heralded controlled-NOT (CNOT) operation between two single photons for the first time.
Our results are an important step towards the development of photon-photon quantum logic gates.
arXiv Detail & Related papers (2020-10-28T06:50:23Z) - Efficient Generation of Subnatural-Linewidth Biphotons by Controlled
Quantum Interference [0.9877468274612591]
Biphotons of narrow bandwidth and long temporal length play a crucial role in long-distance quantum communication.
By manipulating the two-component biphoton wavefunction, we demonstrate biphotons with subnatural linewidth in the sub-MHz regime.
Our work has potential applications in realizing quantum repeaters and large cluster states for LDQC and LOQC.
arXiv Detail & Related papers (2020-09-09T02:39:50Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.