論文の概要: Generating a Terrain-Robustness Benchmark for Legged Locomotion: A
Prototype via Terrain Authoring and Active Learning
- arxiv url: http://arxiv.org/abs/2208.07681v1
- Date: Tue, 16 Aug 2022 11:42:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-17 13:04:29.972629
- Title: Generating a Terrain-Robustness Benchmark for Legged Locomotion: A
Prototype via Terrain Authoring and Active Learning
- Title(参考訳): 脚歩行のための地形ロバスト性ベンチマークの作成:地形オーサリングとアクティブラーニングによるプロトタイプ
- Authors: Chong Zhang
- Abstract要約: 地形のオーサリングと積極的学習による地形データセットの生成を試作した。
幸いなことに、生成されたデータセットは、足の移動のための地形汚染度ベンチマークを作成することができる。
- 参考スコア(独自算出の注目度): 6.254631755450703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Terrain-aware locomotion has become an emerging topic in legged robotics.
However, it is hard to generate challenging and realistic terrains in
simulation, which limits the way researchers evaluate their locomotion
policies. In this paper, we prototype the generation of a terrain dataset via
terrain authoring and active learning, and the learned samplers can stably
generate diverse high-quality terrains. Hopefully, the generated dataset can
make a terrain-robustness benchmark for legged locomotion. The dataset and the
code implementation are released at https://bit.ly/3bn4j7f.
- Abstract(参考訳): 足場を意識した移動は、足場ロボット工学において新たな話題となっている。
しかし、シミュレーションにおいて困難な現実的な地形を生成することは困難であり、研究者が移動政策を評価する方法を制限する。
本稿では,地形のオーサリングとアクティブラーニングによる地形データセットの生成を試作し,学習者が安定して高品質な地形を生成できることを示す。
願わくば、生成されたデータセットは脚の動きの地形ロバスト性ベンチマークを作ることができる。
データセットとコードの実装はhttps://bit.ly/3bn4j7fでリリースされる。
関連論文リスト
- Learning autonomous driving from aerial imagery [67.06858775696453]
フォトグラムシミュレーターは、生成済みの資産を新しいビューに変換することによって、新しいビューを合成することができる。
我々は、ニューラルネットワーク場(NeRF)を中間表現として使用し、地上車両の視点から新しいビューを合成する。
論文 参考訳(メタデータ) (2024-10-18T05:09:07Z) - Learning Humanoid Locomotion over Challenging Terrain [84.35038297708485]
本研究では,自然と人為的な地形を横断する視覚障害者の移動に対する学習に基づくアプローチを提案する。
本モデルではまず, 時系列モデルを用いた平地軌道のデータセット上で事前学習を行い, 補強学習を用いて不均一な地形を微調整する。
本研究では, 荒面, 変形面, 傾斜面など, 様々な地形にまたがる実際のヒューマノイドロボットを用いて, モデルを評価する。
論文 参考訳(メタデータ) (2024-10-04T17:57:09Z) - BiRoDiff: Diffusion policies for bipedal robot locomotion on unseen terrains [0.9480364746270075]
未知の地形での移動は、二足歩行ロボットが新しい現実世界の課題に対処するために不可欠である。
複数の地形を移動させる単一の歩行制御系を学習する軽量なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-07T16:03:33Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Deep Generative Framework for Interactive 3D Terrain Authoring and
Manipulation [4.202216894379241]
本稿では,VAEと生成条件GANモデルを組み合わせた新しいランドスケープオーサリングフレームワークを提案する。
我々のフレームワークは実世界の地形データセットから潜在空間を学習することで既存の手法の限界を克服しようとする例に基づく手法である。
我々はまた、ユーザが最小限の入力で多様な地形を生成できるインタラクティブツールを開発した。
論文 参考訳(メタデータ) (2022-01-07T08:58:01Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Solving Occlusion in Terrain Mapping with Neural Networks [7.703348666813963]
本研究では,実世界のデータに基づいて,地上情報を必要としない自己教師付き学習手法を提案する。
私たちのニューラルネットワークは、自律的な地上ロボットに適したサンプリングレートで、CPUとGPUの両方でリアルタイムで実行できます。
論文 参考訳(メタデータ) (2021-09-15T08:30:16Z) - Quadruped Locomotion on Non-Rigid Terrain using Reinforcement Learning [10.729374293332281]
非剛性な動的地形上での移動学習のための新しい強化学習フレームワークを提案する。
55cmのトレーニングを受けたロボットは、最大5cmまで沈むことができる地形を歩ける。
様々な地形条件でロボットを訓練することで,本手法の有効性を示す。
論文 参考訳(メタデータ) (2021-07-07T00:34:23Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。