論文の概要: Autism spectrum disorder classification based on interpersonal neural
synchrony: Can classification be improved by dyadic neural biomarkers using
unsupervised graph representation learning?
- arxiv url: http://arxiv.org/abs/2208.08902v1
- Date: Wed, 17 Aug 2022 07:10:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-19 14:16:28.140214
- Title: Autism spectrum disorder classification based on interpersonal neural
synchrony: Can classification be improved by dyadic neural biomarkers using
unsupervised graph representation learning?
- Title(参考訳): 対人神経同期に基づく自閉症スペクトラム障害分類:教師なしグラフ表現学習を用いたdyadic neural biomarkerによる分類改善の可能性
- Authors: Christian Gerloff, Kerstin Konrad, Jana Kruppa, Martin
Schulte-R\"uther, Vanessa Reindl
- Abstract要約: ASDの中核的な側面の神経機構を明示的にマッピングする教師なしグラフ表現を導入する。
機能近赤外分光データによる最初の結果は、タスクに依存しない、解釈可能なグラフ表現の潜在的な予測能力を示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research in machine learning for autism spectrum disorder (ASD)
classification bears the promise to improve clinical diagnoses. However, recent
studies in clinical imaging have shown the limited generalization of biomarkers
across and beyond benchmark datasets. Despite increasing model complexity and
sample size in neuroimaging, the classification performance of ASD remains far
away from clinical application. This raises the question of how we can overcome
these barriers to develop early biomarkers for ASD. One approach might be to
rethink how we operationalize the theoretical basis of this disease in machine
learning models. Here we introduced unsupervised graph representations that
explicitly map the neural mechanisms of a core aspect of ASD, deficits in
dyadic social interaction, as assessed by dual brain recordings, termed
hyperscanning, and evaluated their predictive performance. The proposed method
differs from existing approaches in that it is more suitable to capture social
interaction deficits on a neural level and is applicable to young children and
infants. First results from functional-near infrared spectroscopy data indicate
potential predictive capacities of a task-agnostic, interpretable graph
representation. This first effort to leverage interaction-related deficits on
neural level to classify ASD may stimulate new approaches and methods to
enhance existing models to achieve developmental ASD biomarkers in the future.
- Abstract(参考訳): 自閉症スペクトラム障害(ASD)分類のための機械学習の研究は、臨床診断を改善することを約束している。
しかし、最近の臨床画像研究では、ベンチマークデータセットを越えてのバイオマーカーの限定的な一般化が示されている。
神経画像におけるモデル複雑性とサンプルサイズの増加にもかかわらず、ALDの分類性能は臨床応用には程遠い。
これは、asdの初期のバイオマーカーを開発する上で、これらの障壁を乗り越える方法についての疑問を提起する。
ひとつのアプローチは、機械学習モデルでこの病気の理論的な基盤をどのように運用するかを再考することだ。
そこで我々は,非教師なしグラフ表現を導入し,ASDの中核的な側面の神経機構,二元的脳記録による社会的相互作用の障害,ハイパースキャン(hyperscanning)とよばれる機能の評価を行った。
提案手法は, 神経レベルでの社会的相互作用の欠如を捉えるのに適しており, 幼児や幼児に適用できるという点で, 既存の手法と異なる。
機能近赤外分光データによる最初の結果は、タスクに依存しない解釈可能なグラフ表現の潜在的な予測能力を示している。
ASDを分類するために神経レベルでの相互作用関連欠陥を活用するこの最初の試みは、将来、発達的なASDバイオマーカーを達成するために既存のモデルを強化する新しいアプローチや方法を促進する可能性がある。
関連論文リスト
- Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review [4.799269666410891]
本稿では、障害予測タスクのためのfMRIデータセットに対して、GNNとモデル説明可能性技術がどのように適用されてきたかを概説する。
その結果、ほとんどの研究にはパフォーマンスモデルがあるが、これらの研究で強調された健全な特徴は、同じ障害の研究によって大きく異なることが判明した。
これらのバイオマーカーのロバスト性を決定するために,客観的評価指標に基づく新しい標準を確立することを提案する。
論文 参考訳(メタデータ) (2024-05-01T15:29:55Z) - Classification of developmental and brain disorders via graph
convolutional aggregation [6.6356049194991815]
本稿では,グラフサンプリングにおける集約を利用したアグリゲータ正規化グラフ畳み込みネットワークを提案する。
提案モデルは,画像特徴と非画像特徴の両方をグラフノードとエッジに組み込むことで,識別グラフノード表現を学習する。
我々は、自閉症脳画像データ交換(ABIDE)とアルツハイマー病神経イメージングイニシアチブ(ADNI)という2つの大きなデータセット上の最近のベースライン手法と比較して、我々のモデルをベンチマークした。
論文 参考訳(メタデータ) (2023-11-13T14:36:29Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
我々はNeuroExplainerと呼ばれる説明可能な幾何学的深層ネットワークを提案する。
NeuroExplainerは、早産に伴う幼児の皮質発達パターンの解明に使用される。
論文 参考訳(メタデータ) (2023-01-01T12:48:12Z) - Pathology Steered Stratification Network for Subtype Identification in
Alzheimer's Disease [7.594681424335177]
アルツハイマー病(英: Alzheimers disease、AD)は、β-アミロイド、病理学的タウ、神経変性を特徴とする異種多時性神経変性疾患である。
本稿では,AD病理学に確立されたドメイン知識を反応拡散モデルにより組み込んだ新しい病理組織形成ネットワーク(PSSN)を提案する。
論文 参考訳(メタデータ) (2022-10-12T02:52:00Z) - Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling
Model [64.29487107585665]
脳機能ネットワーク上のグラフ表現学習技術は、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を容易にする。
本稿では,脳機能ネットワークからグラフレベル表現を抽出する階層型グラフ表現学習モデルを提案する。
また、モデルの性能をさらに向上させるために、機能的脳ネットワークデータをコントラスト学習のために拡張する新たな戦略を提案する。
論文 参考訳(メタデータ) (2022-07-14T20:03:52Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
因果誘導における現在の視覚システムの系統的評価のための抽象因果分析データセットについて紹介する。
Blicket実験における因果発見の研究の流れに触発され、独立シナリオと介入シナリオのいずれにおいても、以下の4種類の質問で視覚的推論システムに問い合わせる。
純粋なニューラルモデルは確率レベルのパフォーマンスの下で連想戦略に向かう傾向があるのに対し、ニューロシンボリックな組み合わせは後方ブロッキングの推論に苦しむ。
論文 参考訳(メタデータ) (2021-03-26T02:42:38Z) - ICAM-reg: Interpretable Classification and Regression with Feature
Attribution for Mapping Neurological Phenotypes in Individual Scans [3.589107822343127]
本研究では,生成的深層学習における最近の進歩を活かし,同時分類法,回帰法,特徴帰属法を開発した。
Alzheimer's Disease Neuroimaging InitiativeコホートにおけるMini-Mental State examination (MMSE)認知テストスコア予測のタスクについて検証した。
本稿では,生成したfaマップを用いて異常予測を説明し,回帰加群を組み込むことで潜在空間の不連続性を改善することを示す。
論文 参考訳(メタデータ) (2021-03-03T17:55:14Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z) - Explainable and Scalable Machine-Learning Algorithms for Detection of
Autism Spectrum Disorder using fMRI Data [0.2578242050187029]
提案した深層学習モデル ASD-DiagNet は神経型スキャンから ASD の脳スキャンの分類に一貫した精度を示す。
我々の手法はAuto-ASD-Networkと呼ばれ、ディープラーニングとサポートベクトルマシン(SVM)を組み合わせて、ニューロタイプスキャンからASDスキャンを分類する。
論文 参考訳(メタデータ) (2020-03-02T18:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。