Sparse Optimization for Unsupervised Extractive Summarization of Long
Documents with the Frank-Wolfe Algorithm
- URL: http://arxiv.org/abs/2208.09454v1
- Date: Fri, 19 Aug 2022 17:17:43 GMT
- Title: Sparse Optimization for Unsupervised Extractive Summarization of Long
Documents with the Frank-Wolfe Algorithm
- Authors: Alicia Y. Tsai, Laurent El Ghaoui
- Abstract summary: We address the problem of unsupervised extractive document summarization, especially for long documents.
We model the unsupervised problem as a sparse auto-regression one and approximate the resulting problem via a convex, norm-constrained problem.
To generate a summary with $k$ sentences, the algorithm only needs to execute $approx k$, making it very efficient.
- Score: 4.786337974720721
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We address the problem of unsupervised extractive document summarization,
especially for long documents. We model the unsupervised problem as a sparse
auto-regression one and approximate the resulting combinatorial problem via a
convex, norm-constrained problem. We solve it using a dedicated Frank-Wolfe
algorithm. To generate a summary with $k$ sentences, the algorithm only needs
to execute $\approx k$ iterations, making it very efficient. We explain how to
avoid explicit calculation of the full gradient and how to include sentence
embedding information. We evaluate our approach against two other unsupervised
methods using both lexical (standard) ROUGE scores, as well as semantic
(embedding-based) ones. Our method achieves better results with both datasets
and works especially well when combined with embeddings for highly paraphrased
summaries.
Related papers
- A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
We show how to analyze the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions.
We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm.
Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.
arXiv Detail & Related papers (2024-07-19T08:29:12Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
We introduce two oblivious mirror descent algorithms based on a complementary composite setting.
Remarkably, both algorithms work without prior knowledge of the Lipschitz constant or smoothness of the objective function.
We show how to extend our framework to scale and demonstrate the efficiency and robustness of our methods on large scale semidefinite programs.
arXiv Detail & Related papers (2023-06-30T08:34:29Z) - Text Summarization with Oracle Expectation [88.39032981994535]
Extractive summarization produces summaries by identifying and concatenating the most important sentences in a document.
Most summarization datasets do not come with gold labels indicating whether document sentences are summary-worthy.
We propose a simple yet effective labeling algorithm that creates soft, expectation-based sentence labels.
arXiv Detail & Related papers (2022-09-26T14:10:08Z) - An Efficient Coarse-to-Fine Facet-Aware Unsupervised Summarization
Framework based on Semantic Blocks [27.895044398724664]
We propose an efficient Coarse-to-Fine Facet-Aware Ranking (C2F-FAR) framework for unsupervised long document summarization.
In the coarse-level stage, we propose a new segment algorithm to split the document into facet-aware semantic blocks and then filter insignificant blocks.
In the fine-level stage, we select salient sentences in each block and then extract the final summary from selected sentences.
arXiv Detail & Related papers (2022-08-17T12:18:36Z) - Langevin Monte Carlo for Contextual Bandits [72.00524614312002]
Langevin Monte Carlo Thompson Sampling (LMC-TS) is proposed to directly sample from the posterior distribution in contextual bandits.
We prove that the proposed algorithm achieves the same sublinear regret bound as the best Thompson sampling algorithms for a special case of contextual bandits.
arXiv Detail & Related papers (2022-06-22T17:58:23Z) - Robust Sparse Mean Estimation via Sum of Squares [42.526664955704746]
We study the problem of high-dimensional sparse mean estimation in the presence of an $epsilon$-fraction of adversarial outliers.
Our algorithms follow the Sum-of-Squares based, to algorithms approach.
arXiv Detail & Related papers (2022-06-07T16:49:54Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - An Empirical Process Approach to the Union Bound: Practical Algorithms
for Combinatorial and Linear Bandits [34.06611065493047]
This paper proposes near-optimal algorithms for the pure-exploration linear bandit problem in the fixed confidence and fixed budget settings.
We provide an algorithm whose sample complexity scales with the geometry of the instance and avoids an explicit union bound over the number of arms.
We also propose the first algorithm for linear bandits in the the fixed budget setting.
arXiv Detail & Related papers (2020-06-21T00:56:33Z) - Non-Adaptive Adaptive Sampling on Turnstile Streams [57.619901304728366]
We give the first relative-error algorithms for column subset selection, subspace approximation, projective clustering, and volume on turnstile streams that use space sublinear in $n$.
Our adaptive sampling procedure has a number of applications to various data summarization problems that either improve state-of-the-art or have only been previously studied in the more relaxed row-arrival model.
arXiv Detail & Related papers (2020-04-23T05:00:21Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
We propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization.
We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS.
arXiv Detail & Related papers (2020-04-09T01:45:05Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
We study the fundamental problem of fixed design em multidimensional regression.
We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple merging iterative approach, which is novel in the multidimensional setting.
arXiv Detail & Related papers (2020-03-24T19:39:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.