Simulation-Informed Revenue Extrapolation with Confidence Estimate for
Scaleup Companies Using Scarce Time-Series Data
- URL: http://arxiv.org/abs/2208.10375v2
- Date: Tue, 23 Aug 2022 12:38:55 GMT
- Title: Simulation-Informed Revenue Extrapolation with Confidence Estimate for
Scaleup Companies Using Scarce Time-Series Data
- Authors: Lele Cao, Sonja Horn, Vilhelm von Ehrenheim, Richard Anselmo Stahl,
Henrik Landgren
- Abstract summary: We propose a simulation-informed revenue extrapolation (SiRE) algorithm that generates fine-grained long-term revenue predictions.
SiRE works for scaleups that operate in various sectors and provides confidence estimates.
We also observe high performance when SiRE extrapolates long-term predictions from short time-series.
- Score: 0.5690261407732993
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Investment professionals rely on extrapolating company revenue into the
future (i.e. revenue forecast) to approximate the valuation of scaleups
(private companies in a high-growth stage) and inform their investment
decision. This task is manual and empirical, leaving the forecast quality
heavily dependent on the investment professionals' experiences and insights.
Furthermore, financial data on scaleups is typically proprietary, costly and
scarce, ruling out the wide adoption of data-driven approaches. To this end, we
propose a simulation-informed revenue extrapolation (SiRE) algorithm that
generates fine-grained long-term revenue predictions on small datasets and
short time-series. SiRE models the revenue dynamics as a linear dynamical
system (LDS), which is solved using the EM algorithm. The main innovation lies
in how the noisy revenue measurements are obtained during training and
inferencing. SiRE works for scaleups that operate in various sectors and
provides confidence estimates. The quantitative experiments on two practical
tasks show that SiRE significantly surpasses the baseline methods by a large
margin. We also observe high performance when SiRE extrapolates long-term
predictions from short time-series. The performance-efficiency balance and
result explainability of SiRE are also validated empirically. Evaluated from
the perspective of investment professionals, SiRE can precisely locate the
scaleups that have a great potential return in 2 to 5 years. Furthermore, our
qualitative inspection illustrates some advantageous attributes of the SiRE
revenue forecasts.
Related papers
- Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.
Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.
We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Forecasting Company Fundamentals [19.363166648866066]
We evaluate 22 deterministic and probabilistic company fundamentals forecasting models on real company data.
We find that deep learning models provide superior forcasting performance to classical models.
We show how these high-quality forecasts can benefit automated stock allocation.
arXiv Detail & Related papers (2024-10-21T14:21:43Z) - Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Financial Time-Series Forecasting: Towards Synergizing Performance And
Interpretability Within a Hybrid Machine Learning Approach [2.0213537170294793]
This paper propose a comparative study on hybrid machine learning algorithms and leverage on enhancing model interpretability.
For the interpretability, we carry out a systematic overview on the preprocessing techniques of time-series statistics, including decomposition, auto-correlational function, exponential triple forecasting, which aim to excavate latent relations and complex patterns appeared in the financial time-series forecasting.
arXiv Detail & Related papers (2023-12-31T16:38:32Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Uncertainty-aware Remaining Useful Life predictor [57.74855412811814]
Remaining Useful Life (RUL) estimation is the problem of inferring how long a certain industrial asset can be expected to operate.
In this work, we consider Deep Gaussian Processes (DGPs) as possible solutions to the aforementioned limitations.
The performance of the algorithms is evaluated on the N-CMAPSS dataset from NASA for aircraft engines.
arXiv Detail & Related papers (2021-04-08T08:50:44Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network.
It extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices.
We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market.
arXiv Detail & Related papers (2021-04-06T11:09:51Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.