Out of this world neutrino oscillations
- URL: http://arxiv.org/abs/2208.10567v2
- Date: Fri, 3 Nov 2023 12:43:22 GMT
- Title: Out of this world neutrino oscillations
- Authors: Tony Gherghetta and Andrey Shkerin
- Abstract summary: We study how vacuum neutrino oscillations can be affected by a causal, nonlinear and state-dependent modification of quantum field theory.
The effect is induced by a Higgs-neutrino Yukawa interaction that causes a nonlinear interference between the neutrino mass eigenstates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study how vacuum neutrino oscillations can be affected by a causal,
nonlinear and state-dependent modification of quantum field theory that may be
interpreted using the many-worlds formulation of quantum mechanics. The effect
is induced by a Higgs-neutrino Yukawa interaction that causes a nonlinear
interference between the neutrino mass eigenstates. This leads to a tiny change
in the oscillation pattern of light, active neutrinos without altering the
oscillation frequencies. At large baselines where the oscillations disappear,
the nonlinear effect is also suppressed and does not source correlations
between the mass eigenstates once they are entangled with the environment. Our
example provides a way to compute effects of nonlinear quantum mechanics and
field theory that may probe the possible physical reality of many worlds.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Role of non-gaussian quantum fluctuations in neutrino entanglement [0.0]
neutrino-neutrino coherent scattering can give rise to nontrivial quantum entanglement among neutrinos.
We observe that the entanglement induced by the coupling leads to strong delocalization in phase-space with largely non-Gaussian quantum fluctuations.
The link between the neutrino entanglement and quantum fluctuations is illustrated using the one- and two-neutrino entropy.
arXiv Detail & Related papers (2022-05-19T08:30:58Z) - Investigating Leggett-Garg inequality in neutrino oscillations -- role
of decoherence and decay [0.0]
Neutrinos provide us with a unique opportunity to test foundations of quantum mechanics over macroscopic distances.
Sub-dominant effects due to physics beyond the Standard Model (SM) are not yet ruled out.
arXiv Detail & Related papers (2021-12-23T17:26:28Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - A Causal Framework for Non-Linear Quantum Mechanics [0.0]
We show that the resulting low-energy theory, non-linear quantum mechanics, is causal, preserves probability and permits a consistent description of the process of measurement.
We show that non-linear quantum effects can be observed in macroscopic systems even in the presence of de-coherence.
Non-linear quantum mechanics also enables novel gravitational phenomena and may open new directions to solve the black hole information problem.
arXiv Detail & Related papers (2021-06-19T21:52:27Z) - Apparent nonlinear damping triggered by quantum fluctuations [0.0]
In novel technologies such as carbon nanotubes, graphene membranes or superconducting resonators, the origin of nonlinear damping is sometimes unclear.
We show that from the interplay of quantum fluctuations and the nonlinearity of a Josephson junction emerges a power-dependence in the resonator response.
The phenomenon can be understood and visualized through the flow of quasi-probability in phase space where it reveals itself as dephasing.
arXiv Detail & Related papers (2021-04-13T19:13:20Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Theory of Neutrino Detection -- Flavor Oscillations and Weak Values [0.0]
We show that, in the relativistic limit, the quantum theory of neutrino oscillations can be described through the theory of weak measurements.
We write down the flavor equation of motion and calculate the flavor oscillation probability by showing precisely how a single neutrino interferes with itself.
arXiv Detail & Related papers (2020-02-18T22:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.