Beyond Spin: Torsion-Driven Nonlinearity in Spinless Quantum Mechanics
- URL: http://arxiv.org/abs/2504.09698v2
- Date: Thu, 24 Apr 2025 16:26:44 GMT
- Title: Beyond Spin: Torsion-Driven Nonlinearity in Spinless Quantum Mechanics
- Authors: Tomoi Koide, Armin van de Venn,
- Abstract summary: We investigate the previously unexplored quantum dynamics of non-relativistic, spinless particles propagating in curved spaces with torsion.<n>Our results reveal a previously unrecognized mechanism by which torsion, as predicted in certain extensions of general relativity, can influence quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the previously unexplored quantum dynamics of non-relativistic, spinless particles propagating in curved spaces with torsion. Our findings demonstrate that while torsion has been predominantly associated with spin, it can also influence the quantum behavior of spinless particles by inducing a logarithmic nonlinearity in the Schroedinger equation through quantum fluctuations, even in flat space. To facilitate quantization in curved spaces, we introduce a novel stochastic variational method. Unlike canonical quantization, this approach is naturally suited to general coordinate systems, with quantum fluctuations arising from a noise term in the stochastic process that is directly influenced by torsion. By requiring consistency with quantum dynamics, we ultimately derive an upper bound on the magnitude of torsion. Our results reveal a previously unrecognized mechanism by which torsion, as predicted in certain extensions of general relativity, can influence quantum systems, with potential implications for early-universe physics and dark matter or energy models.
Related papers
- Experimental realization and synchronization of a quantum van der Pol oscillator [18.069593561319177]
We present a paradigmatic autonomous quantum driven-dissipative system with nonlinear damping, using a single trapped atom.
We demonstrate the existence of a quantum limit cycle in phase space in the absence of a drive.
We additionally show that synchronization can be enhanced with the help of squeezing perpendicular to the direction of the drive and, counterintuitively, linear dissipation.
arXiv Detail & Related papers (2025-04-01T13:02:50Z) - Quantum Gravity Without Metric Quantization: From Hidden Variables to Hidden Spacetime Curvatures [0.0]
Bohmian mechanics offers a deterministic alternative to conventional quantum theory through well-defined particle trajectories.<n>We develop a covariant extension of Bohmian mechanics in curved spacetime that removes the need for metric quantization.<n>This new approach has far-reaching implications for the role of determinism and potential observational signatures of quantum non-equilibrium in cosmology.
arXiv Detail & Related papers (2025-02-12T14:03:54Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Quantum gravity inspired nonlocal quantum dynamics preserving the classical limit [0.03970441202645725]
Nonlocal modifications of quantum mechanics can be found at non-relativistic energies.
We show that classical limits of quantum probability densities and free energy remain unaffected up to energies comparable with the nonlocality scale.
arXiv Detail & Related papers (2024-05-24T13:33:51Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - On tests of the quantum nature of gravitational interactions in presence
of non-linear corrections to quantum mechanics [6.138671548064356]
We show that entanglement dynamics can occur in the presence of a weak quantum interaction and non-linear corrections to local quantum mechanics.
This highlights the importance of going beyond entanglement detection to conclusively test the quantum character of gravity.
arXiv Detail & Related papers (2023-02-01T10:49:31Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Non-normal Hamiltonian dynamics in quantum systems and its realization
on quantum computers [0.0]
We study the dynamics driven by the non-normal matrix (Hamiltonian) realized as a continuous quantum trajectory of the Lindblad master equation in open quantum systems.
We formulate the transient suppression of the decay rate of the norm due to the pseudospectral behavior and derive a non-Hermitian/non-normal analog of the time-energy uncertainty relation.
arXiv Detail & Related papers (2021-07-18T13:29:28Z) - A Causal Framework for Non-Linear Quantum Mechanics [0.0]
We show that the resulting low-energy theory, non-linear quantum mechanics, is causal, preserves probability and permits a consistent description of the process of measurement.
We show that non-linear quantum effects can be observed in macroscopic systems even in the presence of de-coherence.
Non-linear quantum mechanics also enables novel gravitational phenomena and may open new directions to solve the black hole information problem.
arXiv Detail & Related papers (2021-06-19T21:52:27Z) - Quantum evolution in terms of mechanical motion [0.0]
Quantum tunneling is considered from the point of view of local realism.
It is concluded that a quantum object tunneling through a potential barrier cannot be interpreted as a point-like particle because such an interpretation generates a contradiction with the impossibility of faster-than-light motion.
arXiv Detail & Related papers (2021-03-20T04:37:22Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.