Unsupervised Anomaly Localization with Structural Feature-Autoencoders
- URL: http://arxiv.org/abs/2208.10992v1
- Date: Tue, 23 Aug 2022 14:19:46 GMT
- Title: Unsupervised Anomaly Localization with Structural Feature-Autoencoders
- Authors: Felix Meissen and Johannes Paetzold and Georgios Kaissis and Daniel
Rueckert
- Abstract summary: Unsupervised Anomaly Detection has become a popular method to detect pathologies in medical images.
We propose to tackle this problem using a feature-mapping function that transforms the input intensity images into a space with multiple channels.
We then train an Autoencoder model in this space using structural similarity loss that does not only consider differences in intensity but also in contrast and structure.
- Score: 6.667150890634173
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Unsupervised Anomaly Detection has become a popular method to detect
pathologies in medical images as it does not require supervision or labels for
training. Most commonly, the anomaly detection model generates a "normal"
version of an input image, and the pixel-wise $l^p$-difference of the two is
used to localize anomalies. However, large residuals often occur due to
imperfect reconstruction of the complex anatomical structures present in most
medical images. This method also fails to detect anomalies that are not
characterized by large intensity differences to the surrounding tissue. We
propose to tackle this problem using a feature-mapping function that transforms
the input intensity images into a space with multiple channels where anomalies
can be detected along different discriminative feature maps extracted from the
original image. We then train an Autoencoder model in this space using
structural similarity loss that does not only consider differences in intensity
but also in contrast and structure. Our method significantly increases
performance on two medical data sets for brain MRI. Code and experiments are
available at https://github.com/FeliMe/feature-autoencoder
Related papers
- A Hierarchically Feature Reconstructed Autoencoder for Unsupervised Anomaly Detection [8.512184778338806]
It consists of a well pre-trained encoder to extract hierarchical feature representations and a decoder to reconstruct these intermediate features from the encoder.
The anomalies can be detected when the decoder fails to reconstruct features well, and then errors of hierarchical feature reconstruction are aggregated into an anomaly map to achieve anomaly localization.
Experiment results show that the proposed method outperforms the state-of-the-art methods on MNIST, Fashion-MNIST, CIFAR-10, and MVTec Anomaly Detection datasets.
arXiv Detail & Related papers (2024-05-15T07:20:27Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
We propose a vision transformer-based encoder-decoder model, named AnoViT, to reflect normal information by additionally learning the global relationship between image patches.
The proposed model performed better than the convolution-based model on three benchmark datasets.
arXiv Detail & Related papers (2022-03-21T09:01:37Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
Anomalies in images occur in various scales from a small hole on a carpet to a large stain.
One of the widely used anomaly detection methods, sparse coding, has an issue in dealing with anomalies that are out of the patch size employed to sparsely represent images.
We propose to incorporate multi-scale features to sparse coding and improve the performance of anomaly detection.
arXiv Detail & Related papers (2021-04-09T10:20:34Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Image Anomaly Detection by Aggregating Deep Pyramidal Representations [16.246831343527052]
Anomaly detection consists in identifying, within a dataset, those samples that significantly differ from the majority of the data.
This paper focuses on image anomaly detection using a deep neural network with multiple pyramid levels to analyze the image features at different scales.
arXiv Detail & Related papers (2020-11-12T09:58:27Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Anomaly Detection in Medical Imaging with Deep Perceptual Autoencoders [1.7277957019593995]
We introduce a new powerful method of image anomaly detection.
It relies on the classical autoencoder approach with a re-designed training pipeline.
It outperforms state-of-the-art approaches in complex medical image analysis tasks.
arXiv Detail & Related papers (2020-06-23T18:45:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.