Convex mixed-integer optimization with Frank-Wolfe methods
- URL: http://arxiv.org/abs/2208.11010v6
- Date: Thu, 18 Jul 2024 09:10:11 GMT
- Title: Convex mixed-integer optimization with Frank-Wolfe methods
- Authors: Deborah Hendrych, Hannah Troppens, Mathieu Besançon, Sebastian Pokutta,
- Abstract summary: Mixed-integer nonlinear optimization presents both theoretical and computational challenges.
We propose a new type of method to solve these problems based on a branch-and-bound algorithm with convex node relaxations.
- Score: 20.37026309402396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mixed-integer nonlinear optimization encompasses a broad class of problems that present both theoretical and computational challenges. We propose a new type of method to solve these problems based on a branch-and-bound algorithm with convex node relaxations. These relaxations are solved with a Frank-Wolfe algorithm over the convex hull of mixed-integer feasible points instead of the continuous relaxation via calls to a mixed-integer linear solver as the linear minimization oracle. The proposed method computes feasible solutions while working on a single representation of the polyhedral constraints, leveraging the full extent of mixed-integer linear solvers without an outer approximation scheme and can exploit inexact solutions of node subproblems.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Oracle Complexity of Single-Loop Switching Subgradient Methods for
Non-Smooth Weakly Convex Functional Constrained Optimization [12.84152722535866]
We consider a non- constrained optimization problem where the objective function is weakly convex or weakly convex.
To solve the problem, we consider the subgradient method, which is first-order tuning and easily implement.
arXiv Detail & Related papers (2023-01-30T22:13:14Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
In many applications, we need algorithms which can align partially overlapping point sets are invariant to the corresponding corresponding RPM algorithm.
We first show that the objective is a cubic bound function. We then utilize the convex envelopes of trilinear and bilinear monomial transformations to derive its lower bound.
We next develop a branch-and-bound (BnB) algorithm which only branches over the transformation variables and runs efficiently.
arXiv Detail & Related papers (2021-01-19T04:24:23Z) - Sparse Signal Reconstruction for Nonlinear Models via Piecewise Rational
Optimization [27.080837460030583]
We propose a method to reconstruct degraded signals by a nonlinear distortion and at a limited sampling rate.
Our method formulates as a non exact fitting term and a penalization term.
It is shown how to use the problem in terms of the benefits of our simulations.
arXiv Detail & Related papers (2020-10-29T09:05:19Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
We present a new model of a general convex or non objective machine machine objectives.
We propose an algorithm that solves a constraint with gradually relaxed point levels of each subproblem.
We demonstrate the effectiveness of our new numerical scale problems.
arXiv Detail & Related papers (2020-10-23T05:24:05Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - MINA: Convex Mixed-Integer Programming for Non-Rigid Shape Alignment [77.38594866794429]
convex mixed-integer programming formulation for non-rigid shape matching.
We propose a novel shape deformation model based on an efficient low-dimensional discrete model.
arXiv Detail & Related papers (2020-02-28T09:54:06Z) - Halpern Iteration for Near-Optimal and Parameter-Free Monotone Inclusion
and Strong Solutions to Variational Inequalities [14.848525762485872]
We leverage the connections between nonexpansive maps, monotone Lipschitz operators, and proximal mappings to obtain near-optimal solutions to monotone inclusion problems.
These results translate into near-optimal guarantees for approximating strong solutions to variational inequality problems, approximating convex-concave min-max optimization problems, and minimizing the norm of the gradient in min-max optimization problems.
arXiv Detail & Related papers (2020-02-20T17:12:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.