Large-Scale Traffic Congestion Prediction based on Multimodal Fusion and
Representation Mapping
- URL: http://arxiv.org/abs/2208.11061v2
- Date: Wed, 16 Aug 2023 17:02:51 GMT
- Title: Large-Scale Traffic Congestion Prediction based on Multimodal Fusion and
Representation Mapping
- Authors: Bodong Zhou, Jiahui Liu, Songyi Cui, Yaping Zhao
- Abstract summary: It is one of the most important tasks to judge traffic congestion by analysing the congestion factors.
Traditional and machine-learning-based models have been introduced for predicting traffic congestion.
A novel end-to-end framework based on convolutional neural networks is proposed in this paper.
- Score: 5.893431681364435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the progress of the urbanisation process, the urban transportation
system is extremely critical to the development of cities and the quality of
life of the citizens. Among them, it is one of the most important tasks to
judge traffic congestion by analysing the congestion factors. Recently, various
traditional and machine-learning-based models have been introduced for
predicting traffic congestion. However, these models are either poorly
aggregated for massive congestion factors or fail to make accurate predictions
for every precise location in large-scale space. To alleviate these problems, a
novel end-to-end framework based on convolutional neural networks is proposed
in this paper. With learning representations, the framework proposes a novel
multimodal fusion module and a novel representation mapping module to achieve
traffic congestion predictions on arbitrary query locations on a large-scale
map, combined with various global reference information. The proposed framework
achieves significant results and efficient inference on real-world large-scale
datasets.
Related papers
- Deep Learning-driven Mobile Traffic Measurement Collection and Analysis [0.43512163406552007]
In this thesis, we harness the powerful hierarchical feature learning abilities of Deep Learning (DL) techniques in both spatial and temporal domains.
We develop solutions for precise city-scale mobile traffic analysis and forecasting.
arXiv Detail & Related papers (2024-10-14T06:53:45Z) - Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach [3.343804744266258]
This study proposes a graph wavelet temporal convolution network (MSGWTCN) to predict the traffic states in complex transportation networks.
Two real-world datasets are used to investigate the model performance, including a highway network in Seattle and a dense road network of Manhattan in New York City.
arXiv Detail & Related papers (2024-06-18T20:05:47Z) - Deep Multi-View Channel-Wise Spatio-Temporal Network for Traffic Flow Prediction [18.008631008649658]
underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemporal underlineNetwork (MVC-STNet)
We study the novel problem of multi-channel traffic flow prediction, and propose a deep underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemp
arXiv Detail & Related papers (2024-04-23T13:39:04Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Building Transportation Foundation Model via Generative Graph
Transformer [12.660129805049664]
We propose a novel approach, Transportation Foundation Model (TFM), which integrates the principles of traffic simulation into traffic prediction.
TFM uses graph structures and dynamic graph generation algorithms to capture the participatory behavior and interaction of transportation system actors.
This data-driven and model-free simulation method addresses the challenges faced by traditional systems in terms of structural complexity and model accuracy.
arXiv Detail & Related papers (2023-05-24T07:34:15Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Crowd Counting via Hierarchical Scale Recalibration Network [61.09833400167511]
We propose a novel Hierarchical Scale Recalibration Network (HSRNet) to tackle the task of crowd counting.
HSRNet models rich contextual dependencies and recalibrating multiple scale-associated information.
Our approach can ignore various noises selectively and focus on appropriate crowd scales automatically.
arXiv Detail & Related papers (2020-03-07T10:06:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.