Building Transportation Foundation Model via Generative Graph
Transformer
- URL: http://arxiv.org/abs/2305.14826v1
- Date: Wed, 24 May 2023 07:34:15 GMT
- Title: Building Transportation Foundation Model via Generative Graph
Transformer
- Authors: Xuhong Wang, Ding Wang, Liang Chen and Yilun Lin
- Abstract summary: We propose a novel approach, Transportation Foundation Model (TFM), which integrates the principles of traffic simulation into traffic prediction.
TFM uses graph structures and dynamic graph generation algorithms to capture the participatory behavior and interaction of transportation system actors.
This data-driven and model-free simulation method addresses the challenges faced by traditional systems in terms of structural complexity and model accuracy.
- Score: 12.660129805049664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient traffic management is crucial for maintaining urban mobility,
especially in densely populated areas where congestion, accidents, and delays
can lead to frustrating and expensive commutes. However, existing prediction
methods face challenges in terms of optimizing a single objective and
understanding the complex composition of the transportation system. Moreover,
they lack the ability to understand the macroscopic system and cannot
efficiently utilize big data. In this paper, we propose a novel approach,
Transportation Foundation Model (TFM), which integrates the principles of
traffic simulation into traffic prediction. TFM uses graph structures and
dynamic graph generation algorithms to capture the participatory behavior and
interaction of transportation system actors. This data-driven and model-free
simulation method addresses the challenges faced by traditional systems in
terms of structural complexity and model accuracy and provides a foundation for
solving complex transportation problems with real data. The proposed approach
shows promising results in accurately predicting traffic outcomes in an urban
transportation setting.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - TransWorldNG: Traffic Simulation via Foundation Model [23.16553424318004]
We present TransWordNG, a traffic simulator that uses Data-driven algorithms and Graph Computing techniques to learn traffic dynamics from real data.
The results demonstrate that TransWorldNG can generate more realistic traffic patterns compared to traditional simulators.
arXiv Detail & Related papers (2023-05-25T05:49:30Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Large-Scale Traffic Congestion Prediction based on Multimodal Fusion and
Representation Mapping [5.893431681364435]
It is one of the most important tasks to judge traffic congestion by analysing the congestion factors.
Traditional and machine-learning-based models have been introduced for predicting traffic congestion.
A novel end-to-end framework based on convolutional neural networks is proposed in this paper.
arXiv Detail & Related papers (2022-08-23T16:07:28Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
We present DTIGNN, an approach that can predict network-level traffic flows from sparse data.
We demonstrate that our method outperforms state-of-the-art methods and can better support decision-making in transportation.
arXiv Detail & Related papers (2022-08-13T13:30:35Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
The proposed system includes an optimization-based OD matrix generation method, a Neural Network (NN) model trained to predict OD matrices via the pattern of traffic flow and a microscopic traffic simulator.
We test the proposed system on the road network of the central terminal area (CTA) of the Los Angeles International Airport (LAX)
arXiv Detail & Related papers (2020-08-05T01:41:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.