論文の概要: Towards Adversarial Purification using Denoising AutoEncoders
- arxiv url: http://arxiv.org/abs/2208.13838v1
- Date: Mon, 29 Aug 2022 19:04:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-31 13:31:21.548560
- Title: Towards Adversarial Purification using Denoising AutoEncoders
- Title(参考訳): Denoising AutoEncoder を用いた逆浄化に向けて
- Authors: Dvij Kalaria, Aritra Hazra and Partha Pratim Chakrabarti
- Abstract要約: 敵対的攻撃は、通常画像に対する微妙な摂動によってしばしば得られる。
本稿では,DAE(Denoising AutoEncoders)を利用したAPuDAEというフレームワークを提案する。
当社のフレームワークが、敵を浄化するベースラインメソッドに比較して、ほとんどの場合、優れたパフォーマンスを提供する方法を示します。
- 参考スコア(独自算出の注目度): 0.8701566919381223
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid advancement and increased use of deep learning models in image
identification, security becomes a major concern to their deployment in
safety-critical systems. Since the accuracy and robustness of deep learning
models are primarily attributed from the purity of the training samples,
therefore the deep learning architectures are often susceptible to adversarial
attacks. Adversarial attacks are often obtained by making subtle perturbations
to normal images, which are mostly imperceptible to humans, but can seriously
confuse the state-of-the-art machine learning models. We propose a framework,
named APuDAE, leveraging Denoising AutoEncoders (DAEs) to purify these samples
by using them in an adaptive way and thus improve the classification accuracy
of the target classifier networks that have been attacked. We also show how
using DAEs adaptively instead of using them directly, improves classification
accuracy further and is more robust to the possibility of designing adaptive
attacks to fool them. We demonstrate our results over MNIST, CIFAR-10, ImageNet
dataset and show how our framework (APuDAE) provides comparable and in most
cases better performance to the baseline methods in purifying adversaries. We
also design adaptive attack specifically designed to attack our purifying model
and demonstrate how our defense is robust to that.
- Abstract(参考訳): 画像識別におけるディープラーニングモデルの急速な進歩と利用の増加により、セキュリティは安全クリティカルなシステムへの展開において大きな関心事となっている。
ディープラーニングモデルの正確性と堅牢性は、トレーニングサンプルの純度に起因するため、ディープラーニングアーキテクチャは、しばしば敵の攻撃に影響を受けやすい。
敵対的攻撃は、通常画像に微妙な摂動を加えることでしばしば得られるが、それは主に人間には認識できないが、最先端の機械学習モデルをひどく混乱させる可能性がある。
我々は,これらのサンプルを適応的に利用することにより,攻撃を受けたターゲット分類器ネットワークの分類精度を向上させるために,非正規化オートエンコーダ(denoising autoencoder, daes)を活用したフレームワークapudaeを提案する。
また,DAEを直接使用するのではなく適応的に使用する方法を示し,分類精度をさらに向上し,適応攻撃を設計して騙す可能性も高めている。
我々は、MNIST、CIFAR-10、ImageNetデータセットに対して結果を示し、我々のフレームワーク(APuDAE)が、敵を浄化するベースラインメソッドと同等で、ほとんどの場合、より良いパフォーマンスを提供することを示す。
我々はまた、浄化モデルを攻撃するために特別に設計された適応攻撃を設計し、その防御がいかに堅牢かを示す。
関連論文リスト
- Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
本研究は,各種機械学習モデルを訓練し,GANとSMOTEを用いてテキスト分類モデルへの攻撃を目的とした追加データポイントを生成することにより,そのギャップを解消する。
実験の結果,分類モデルの重大な脆弱性が明らかとなった。特に,攻撃後の最上位のテキスト分類モデルの精度が20%低下し,顔認識精度が30%低下した。
論文 参考訳(メタデータ) (2024-11-03T18:44:28Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - FACTUAL: A Novel Framework for Contrastive Learning Based Robust SAR Image Classification [10.911464455072391]
FACTUALは、逆行訓練と堅牢なSAR分類のためのコントラストラーニングフレームワークである。
本モデルでは, 洗浄試料の99.7%, 摂動試料の89.6%の精度が得られた。
論文 参考訳(メタデータ) (2024-04-04T06:20:22Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Learning from Attacks: Attacking Variational Autoencoder for Improving
Image Classification [17.881134865491063]
敵対的攻撃はディープニューラルネットワーク(DNN)の堅牢性に対する脅威と見なされることが多い。
この研究は、異なる視点から敵の攻撃を分析する。つまり、敵の例は、予測に有用な暗黙の情報を含んでいる。
データ自己表現とタスク固有の予測にDNNの利点を利用するアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-11T08:48:26Z) - Detecting Adversaries, yet Faltering to Noise? Leveraging Conditional
Variational AutoEncoders for Adversary Detection in the Presence of Noisy
Images [0.7734726150561086]
条件変分オートエンコーダ(CVAE)は、知覚不能な画像摂動を検出するのに驚くほど優れている。
画像分類ネットワーク上での敵攻撃を検出するために,CVAEを効果的に利用する方法を示す。
論文 参考訳(メタデータ) (2021-11-28T20:36:27Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
特に、我々の層は、逆の層とは反対の方向に入力摂動を生成します。
我々は,我々の階層と名目および頑健に訓練されたモデルを組み合わせることで,我々のアプローチの有効性を検証する。
我々の対向層は、クリーンな精度でコストを伴わずにモデルロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2021-03-26T09:36:59Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。