Bounded light cone and robust topological order out of equilibrium
- URL: http://arxiv.org/abs/2208.13839v4
- Date: Mon, 28 Oct 2024 14:22:56 GMT
- Title: Bounded light cone and robust topological order out of equilibrium
- Authors: Yu Zeng, Alioscia Hamma, Yu-Ran Zhang, Jun-Peng Cao, Heng Fan, Wu-Ming Liu,
- Abstract summary: Ground state degeneracy of topologically ordered gapped Hamiltonians is the bedrock for self-correcting quantum memories.
We show that the emergence of a bounded light cone renders the unitary time evolution a quasi-adiabatic continuation that preserves topological order.
- Score: 6.549122700373228
- License:
- Abstract: The ground state degeneracy of topologically ordered gapped Hamiltonians is the bedrock for self-correcting quantum memories, which are unfortunately not stable away from equilibrium even at zero temperature. This plague precludes practical robust self-correction since stability at zero temperature is a prerequisite for finite-temperature robustness. In this work, we show that the emergence of a bounded light cone renders the unitary time evolution a quasi-adiabatic continuation that preserves topological order, with the initial ground space retaining its macroscopic distance at all times as a quantum code. We also show how bounded light cones can emerge through suitable perturbations in Kitaev's toric code and honeycomb model. Our results suggest that topological orders and self-correcting quantum memories can be dynamically robust at zero temperature.
Related papers
- Dynamical freezing in the thermodynamic limit: the strongly driven ensemble [37.31317754926534]
A periodically driven (Floquet) system in the absence of any conservation law heats to a featureless infinite temperature' state.
Here, we find--for a clean and interacting generic spin chain--that this can be prevented by the emergence of it approximate but stable conservation-laws not present in the undriven system.
We show numerically, it in the thermodynamic limit,' that when required by these emergent conservation-laws, the entanglement-entropy density of an infinite subsystem remains zero.
arXiv Detail & Related papers (2024-10-14T19:57:43Z) - Observation of a Prethermal $U(1)$ Discrete Time Crystal [0.0]
A time crystal is a state of periodically driven matter which breaks discrete time translation symmetry.
Recent theoretical work has developed the notion of prethermalization.
We show the existence of a long-lived prethermal regime whose lifetime is significantly enhanced by.
strengthening an emergent $U(1)$ conservation law.
arXiv Detail & Related papers (2023-03-17T20:30:33Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Protecting topological order by dynamical localization [15.306802863933541]
We show that dynamical localization induced by disorder makes the time evolution a local unitary transformation at all times.
Our results suggest that the two dimensional topological quantum memory can be dynamically robust at zero temperature.
arXiv Detail & Related papers (2021-02-05T08:06:42Z) - Quasi-Locality Bounds for Quantum Lattice Systems. Part II.
Perturbations of Frustration-Free Spin Models with Gapped Ground States [0.0]
We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems.
Under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential.
arXiv Detail & Related papers (2020-10-29T03:24:19Z) - Unitary preparation of many body Chern insulators: Adiabatic bulk
boundary correspondence [14.4034719868008]
We prepare an out-of-equilibrium many-body Chern insulator (CI) and associated bulk-boundary correspondence unitarily.
We show that a non-linear ramp may work more efficiently in approaching the topological state.
We also compute the edge current in the time evolved state of the system under a semi-periodic boundary condition.
arXiv Detail & Related papers (2020-05-04T13:14:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.