論文の概要: Optimizing the number of CNOT gates in one-dimensional nearest-neighbor
quantum Fourier transform circuit
- arxiv url: http://arxiv.org/abs/2208.14249v1
- Date: Tue, 30 Aug 2022 13:24:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-28 11:51:16.124367
- Title: Optimizing the number of CNOT gates in one-dimensional nearest-neighbor
quantum Fourier transform circuit
- Title(参考訳): 1次元近接量子フーリエ変換回路におけるCNOTゲート数最適化
- Authors: Byeongyong Park (1,2), Doyeol Ahn (1,2,3) ((1) Department of
Electrical and Computer Engineering and Center for Quantum Information
Processing, University of Seoul, Republic of Korea, (2) First Quantum Inc.,
Seoul, Republic of Korea, (3) Physics Department, Florida Atlantic
University, Boca Raton, FL)
- Abstract要約: 量子フーリエ変換の一次元近接回路(QFT)を構築する。
提案手法はCNOTゲートの数を60%削減する。
量子振幅推定には, 近接回路の1次元化が可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The physical limitations of quantum hardware often require nearest-neighbor
qubit structures, in which two-qubit gates are required to construct
nearest-neighbor quantum circuits. However, two-qubit gates are considered a
major cost of quantum circuits because of their high error rate as compared
with single-qubit gates. The controlled-not (CNOT) gate is the typical choice
of a two-qubit gate for universal quantum circuit implementation together with
the set of single-qubit gates. In this study, we construct a one-dimensional
nearest-neighbor circuit of quantum Fourier transform (QFT), which is one of
the most frequently used quantum algorithms. Compared with previous studies on
n-qubit one-dimensional nearest-neighbor QFT circuits, it is found that our
method reduces the number of CNOT gates by ~60%. Additionally, we showed that
our results for the one-dimensional nearest-neighbor circuit can be applied to
quantum amplitude estimation.
- Abstract(参考訳): 量子ハードウェアの物理的制限は、近接量子ビット構造を必要とすることが多く、2量子ゲートは近接量子回路を構築するために必要である。
しかし、2キュービットゲートは単一キュービットゲートと比較して高い誤差率のため、量子回路の主要なコストと見なされている。
cnot(controled-not)ゲートは、単一量子ビットゲートの集合とともに、ユニバーサル量子回路実装のための2量子ビットゲートの典型的選択である。
本研究では,最も頻繁に使用される量子アルゴリズムの一つである量子フーリエ変換(QFT)の1次元近傍回路を構築する。
従来のn-qubit 1次元近接QFT回路と比較して,提案手法はCNOTゲートの数を約60%削減することがわかった。
さらに, 量子振幅推定に一次元最近傍回路を適用できることを示した。
関連論文リスト
- QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Quantum circuit synthesis via a random combinatorial search [0.0]
我々はランダムな探索手法を用いて、完全な量子状態準備や任意のターゲットを持つユニタリ演算子合成を実装した量子ゲート列を求める。
完全忠実度量子回路の分数は、回路サイズが単位忠実度を達成するために必要な最小回路サイズを超えると、急速に増加することを示す。
論文 参考訳(メタデータ) (2023-11-29T00:59:29Z) - State preparation by shallow circuits using feed forward [0.0]
我々は,この4ステップ方式を用いて,フォールトトレラントな計算を行わず,短い,一定の深さの量子回路を強化する。
LAQCC回路は、一定の深さの量子回路では達成できない長距離相互作用を創出できることを示す。
我々は、任意の数の状態に対する一様重ね合わせのための3つの新しい状態準備プロトコルを作成する。
論文 参考訳(メタデータ) (2023-07-27T13:20:21Z) - Comparing planar quantum computing platforms at the quantum speed limit [0.0]
我々は、中性原子および超伝導量子ビットにおける現実的な2量子および多量子ゲート実装のための量子速度制限(QSL)の理論最小ゲート時間の比較を示す。
我々はこれらの量子アルゴリズムを、標準ゲートモデルとパリティマッピングの両方において、回路実行時間とゲート数の観点から解析する。
論文 参考訳(メタデータ) (2023-04-04T12:47:00Z) - Decomposition of Multi-controlled Special Unitary Single-Qubit Gates [1.412197703754359]
マルチコントロールユニタリゲートは、その誕生以来、量子コンピューティングへの関心の対象となっている。
n-qubitマルチコントロールゲートの実装に対する現在の最先端のアプローチは、シングルキュービットゲートとCNOTゲートの2乗数を使うことである。
20nに比例する多数のCNOTゲートを持つ回路を必要とするn-qubit多重制御SU(2)ゲートを新たに分解する。
論文 参考訳(メタデータ) (2023-02-13T14:08:53Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
超伝導量子プロセッサを設計する。
本稿では,2量子共振共振ゲートを備えたユニバーサルゲートセットを提案する。
ノイズの多い量子ハードウェアのための$rm SU(16)$ゲートの合成を数値的に実証する。
論文 参考訳(メタデータ) (2022-12-08T18:59:53Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
本稿では,CNOT$ゲート数を持つ1量子および2量子ビットの量子ゲートを用いて,一般量子プログラムを分解する新しい数値計算手法を提案する。
本手法は, 既設計量子回路における単一量子ビット回転ゲートに関するパラメータの逐次最適化に基づく。
論文 参考訳(メタデータ) (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
回路量子力学(cQED)システムにおける格子$Phi4$理論の量子アルゴリズムの実装について論じる。
quditシステムの主な利点は、そのマルチレベル特性により、対角的な単一量子ゲートでしかフィールドの相互作用を実装できないことである。
論文 参考訳(メタデータ) (2021-08-30T16:30:33Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUINTIFYは、量子回路の定量的解析のためのオープンソースのフレームワークである。
Google Cirqをベースにしており、Clifford+T回路を念頭に開発されている。
ベンチマークのため、QUINTIFYは量子メモリと量子演算回路を含む。
論文 参考訳(メタデータ) (2020-07-21T15:36:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。