Optimal phase sensitivity of an unbalanced Mach-Zehnder interferometer
- URL: http://arxiv.org/abs/2208.14353v1
- Date: Tue, 30 Aug 2022 15:57:45 GMT
- Title: Optimal phase sensitivity of an unbalanced Mach-Zehnder interferometer
- Authors: Karunesh K. Mishra and Stefan Ataman
- Abstract summary: An unbalanced Mach-Zehnder interferometer can outperform its balanced counterpart in terms of phase sensitivity.
We show that an unbalanced Mach-Zehnder interferometer can outperform its balanced counterpart in terms of phase sensitivity.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we address the problem of optimizing an unbalanced Mach-Zehnder
interferometer, for a given pure input state and considering a specific
detection scheme. While the optimum transmission coefficient of the first beam
splitter can be uniquely determined via the quantum Fisher information only
[Phys. Rev. A 105, 012604 (2022)], the second beam splitter transmission
coefficient is detection-scheme dependent, too. We systematically give analytic
solutions for the optimum transmission coefficient of the second beam splitter
for three types of widely used detection schemes. We provide detailed examples
including both Gaussian and non-Gaussian input states, showing when an
unbalanced Mach-Zehnder interferometer can outperform its balanced counterpart
in terms of phase sensitivity.
Related papers
- Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.
We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.
We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Optimal asymptotic precision bounds for nonlinear quantum metrology under collective dephasing [0.0]
Dephasing noise remains a leading source of decoherence in state-of-the-art quantum sensing platforms.
We analyze the impact of classical em collective dephasing with arbitrary temporal correlations on the performance of generalized interferometry protocols.
arXiv Detail & Related papers (2024-12-30T23:55:24Z) - Enhancing phase sensitivity in Mach-Zehnder interferometer with various detection schemes using SU(1,1) coherent states [0.0]
The Mach-Zehnder interferometer (MZI) is a versatile tool for analyzing this phenomenon.
This paper analyzes the phase sensitivity of a MZI in various scenarios using different detection schemes and input states.
arXiv Detail & Related papers (2024-06-12T08:54:17Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Simultaneous quantum estimation of phase and indistinguishability in a
two photon interferometer [0.0]
We derive the quantum Fisher information matrix associated to the simultaneous estimation of an interferometric phase.
We perform an experiment based on a pair of photons with an unknown degree of indistinguishability entering a two-port interferometer.
arXiv Detail & Related papers (2023-03-27T18:56:03Z) - Robust phase metrology with hybrid quantum interferometers against
particle losses [0.0]
Entanglement is an important quantum resource to achieve high sensitive quantum metrology.
We propose a spin-oscillator hybrid quantum interferometer to achieve the desirable precise estimation of the encoded parameter.
The proposed hybrid quantum interferometer possesses a manifest robustness against the particle losses of the vibrational modes.
arXiv Detail & Related papers (2023-03-12T08:14:01Z) - Large-momentum-transfer atom interferometers with $\mu$rad-accuracy
using Bragg diffraction [0.0]
LMT atom interferometers using elastic Bragg scattering on light waves are among the most precise quantum sensors to date.
We develop an analytic model for the interferometer signal and demonstrate its accuracy using comprehensive numerical simulations.
arXiv Detail & Related papers (2022-08-13T13:31:29Z) - High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators:
Symmetry Breaking and Floquet Protection [55.41644538483948]
We study the qubit dephasing caused by the non-Gaussian fluctuators.
We predict a symmetry-breaking effect that is unique to the non-Gaussian noise.
arXiv Detail & Related papers (2022-06-06T18:02:38Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Multimode Metrology via Scattershot Sampling [0.0]
We introduce three different scalable multimode interferometers to quantify quantum Fisher information performance.
We prove all three interferometers gives the same amount of information on average, which can be shown to beat the classical precision limit.
arXiv Detail & Related papers (2021-05-10T06:33:12Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.