論文の概要: Diffusion-based Molecule Generation with Informative Prior Bridges
- arxiv url: http://arxiv.org/abs/2209.00865v1
- Date: Fri, 2 Sep 2022 07:52:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:37:30.285486
- Title: Diffusion-based Molecule Generation with Informative Prior Bridges
- Title(参考訳): インフォメーションプリアーブリッジを用いた拡散に基づく分子生成
- Authors: Lemeng Wu, Chengyue Gong, Xingchao Liu, Mao Ye, Qiang Liu
- Abstract要約: 本稿では,物理・統計的事前情報を用いた拡散型生成モデルの学習を支援するための,シンプルで新しい手法を提案する。
本稿では,リアプノフ関数を用いた橋梁の構築と決定手法を開発し,情報的事前橋梁の提案を多数提案する。
包括的実験により,本手法は3次元生成タスクに強力なアプローチを提供することを示す。
- 参考スコア(独自算出の注目度): 36.42431578790136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based molecule generation provides a promising approach to a large area of
biomedical sciences and engineering, such as antibody design, hydrolase
engineering, or vaccine development. Because the molecules are governed by
physical laws, a key challenge is to incorporate prior information into the
training procedure to generate high-quality and realistic molecules. We propose
a simple and novel approach to steer the training of diffusion-based generative
models with physical and statistics prior information. This is achieved by
constructing physically informed diffusion bridges, stochastic processes that
guarantee to yield a given observation at the fixed terminal time. We develop a
Lyapunov function based method to construct and determine bridges, and propose
a number of proposals of informative prior bridges for both high-quality
molecule generation and uniformity-promoted 3D point cloud generation. With
comprehensive experiments, we show that our method provides a powerful approach
to the 3D generation task, yielding molecule structures with better quality and
stability scores and more uniformly distributed point clouds of high qualities.
- Abstract(参考訳): AIベースの分子生成は、抗体設計、ヒドロラーゼ工学、ワクチン開発など、バイオメディカル科学と工学の幅広い分野への有望なアプローチを提供する。
分子は物理法則によって支配されるため、事前情報を訓練手順に組み込んで高品質で現実的な分子を生成することが重要な課題である。
本稿では,物理および統計情報を用いた拡散型生成モデルの学習を支援するための,シンプルで新しい手法を提案する。
これは、物理的に情報を得た拡散ブリッジ、固定終端時刻に所定の観測値が得られることを保証する確率過程を構築することで達成される。
Lyapunov関数を用いた橋梁の構築と決定手法を開発し,高品質な分子生成と均一な3次元点雲生成のための情報的先行橋の提案を行った。
包括的実験により,本手法は,高品質で安定な分子構造と,高品質で均一に分布する点雲の3次元生成に強力なアプローチを提供することを示す。
関連論文リスト
- MDM: Molecular Diffusion Model for 3D Molecule Generation [19.386468094571725]
既存の拡散に基づく3D分子生成法は、不満足な性能に悩まされる可能性がある。
原子間関係は分子の3次元点雲表現にはない。
提案したモデルは、条件付きタスクと条件付きタスクの両方において、既存のメソッドよりも大幅に優れている。
論文 参考訳(メタデータ) (2022-09-13T03:40:18Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
制御可能な分子生成のための検索に基づく新しいフレームワークを提案する。
我々は、与えられた設計基準を満たす分子の合成に向けて、事前学習された生成モデルを操るために、分子の小さなセットを使用します。
提案手法は生成モデルの選択に非依存であり,タスク固有の微調整は不要である。
論文 参考訳(メタデータ) (2022-08-23T17:01:16Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
MOODは、逆時間拡散を高速領域に導く特性予測ネットワークからの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
本稿では,単純な分子システムから得られた知識をより複雑なものに伝達するための新しい手法を提案する。
我々は、高低自由エネルギー状態の分類に焦点をあてる。
以上の結果より, トリアラニンからデカアラニン系への移行学習において, 0.92 の顕著な AUC が得られた。
論文 参考訳(メタデータ) (2022-05-06T16:21:00Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z) - Structure-aware generation of drug-like molecules [2.449909275410288]
深部生成法は、新しい分子をスクラッチから提案する(デノボ設計)。
本稿では, 分子間空間における3次元ポーズと協調して分子グラフを生成する新しい教師付きモデルを提案する。
ドッキングベンチマークを用いて,ドッキングモデルの評価を行い,ドッキング生成によって予測される結合親和性が8%向上し,薬物類似度が10%向上することが確認された。
論文 参考訳(メタデータ) (2021-11-07T15:19:54Z) - Generating stable molecules using imitation and reinforcement learning [0.0]
カルテシアン座標における分子生成のための強化学習手法を提案する。
我々は、GDB-11データベース上での模倣学習から基本的な化学規則を学び、初期モデルを作成する。
次に、強化学習環境において、特定の統計量で条件付けられたモデルの複数のコピーをデプロイする。
論文 参考訳(メタデータ) (2021-07-11T10:18:19Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。