論文の概要: nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation
Methods
- arxiv url: http://arxiv.org/abs/2209.01124v1
- Date: Fri, 2 Sep 2022 15:34:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:32:02.534541
- Title: nnOOD: A Framework for Benchmarking Self-supervised Anomaly Localisation
Methods
- Title(参考訳): nnOOD: 自己管理型異常局所化手法のベンチマークのためのフレームワーク
- Authors: Matthew Baugh, Jeremy Tan, Athanasios Vlontzos, Johanna P. M\"uller,
Bernhard Kainz
- Abstract要約: nnOOD は nnU-Net に適応し、自己教師付き異常局所化法の比較を可能にする。
我々は現在の最先端タスクを実装し、それを挑戦的なX線データセットで評価する。
- 参考スコア(独自算出の注目度): 4.31513157813239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wide variety of in-distribution and out-of-distribution data in medical
imaging makes universal anomaly detection a challenging task. Recently a number
of self-supervised methods have been developed that train end-to-end models on
healthy data augmented with synthetic anomalies. However, it is difficult to
compare these methods as it is not clear whether gains in performance are from
the task itself or the training pipeline around it. It is also difficult to
assess whether a task generalises well for universal anomaly detection, as they
are often only tested on a limited range of anomalies. To assist with this we
have developed nnOOD, a framework that adapts nnU-Net to allow for comparison
of self-supervised anomaly localisation methods. By isolating the synthetic,
self-supervised task from the rest of the training process we perform a more
faithful comparison of the tasks, whilst also making the workflow for
evaluating over a given dataset quick and easy. Using this we have implemented
the current state-of-the-art tasks and evaluated them on a challenging X-ray
dataset.
- Abstract(参考訳): 医用画像における分布内および分布外データの多様さは、普遍的異常検出を困難な課題にしている。
近年,合成異常を付加した健康データに基づくエンドツーエンドモデルを訓練する自己指導手法が数多く開発されている。
しかしながら、パフォーマンスの向上がタスク自体からなのか、あるいはそれを取り巻くトレーニングパイプラインからなのかは定かではないため、これらの方法を比較することは困難である。
タスクが普遍的な異常検出のためにうまく一般化するかどうかを評価することも困難であり、それらは限られた範囲の異常でのみテストされることが多い。
そこで我々は,自己教師付き異常局所化手法の比較を可能にするため,nnU-Netに適応するフレームワークであるnnOODを開発した。
合成された自己教師付きタスクを他のトレーニングプロセスから分離することで、タスクをより忠実に比較すると同時に、所定のデータセット上で評価するためのワークフローを迅速かつ容易にします。
これを用いて、現在の最先端タスクを実装し、挑戦的なX線データセットで評価した。
関連論文リスト
- GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
本稿では,新しい手法のモジュラーフレームワークであるADerを包括的視覚異常検出ベンチマークとして紹介する。
このベンチマークには、産業ドメインと医療ドメインからの複数のデータセットが含まれており、15の最先端メソッドと9つの包括的なメトリクスを実装している。
我々は,異なる手法の長所と短所を客観的に明らかにし,多クラス視覚異常検出の課題と今後の方向性について考察する。
論文 参考訳(メタデータ) (2024-06-05T13:40:07Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - A Generic Machine Learning Framework for Fully-Unsupervised Anomaly
Detection with Contaminated Data [0.0]
本稿では,ADタスクに対する汚染されたトレーニングデータの完全教師なし改善のためのフレームワークを提案する。
このフレームワークは汎用的であり、任意の残差ベースの機械学習モデルに適用することができる。
本研究は, 改質を伴わない汚染データを用いた学習において, ナイーブなアプローチよりも明らかに優れていることを示す。
論文 参考訳(メタデータ) (2023-08-25T12:47:59Z) - Many tasks make light work: Learning to localise medical anomalies from
multiple synthetic tasks [2.912977051718473]
シングルクラスモデリングとアウト・オブ・ディストリビューション検出への関心が高まっている。
完全な教師付き機械学習モデルは、トレーニングに含まれていないクラスを確実に識別することはできない。
我々は,複数の視覚的に識別可能な合成異常学習タスクを,トレーニングと検証の両方に利用している。
論文 参考訳(メタデータ) (2023-07-03T09:52:54Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Meta-learning One-class Classifiers with Eigenvalue Solvers for
Supervised Anomaly Detection [55.888835686183995]
教師付き異常検出のためのニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は,既存の異常検出法や少数ショット学習法よりも優れた性能を実現することを実験的に実証した。
論文 参考訳(メタデータ) (2021-03-01T01:43:04Z) - Self-Taught Semi-Supervised Anomaly Detection on Upper Limb X-rays [11.859913430860335]
監視されたディープネットワークは、放射線学者による多数の注釈を取る。
私たちのアプローチの合理性は、ラベルのないデータを活用するためにタスクのプリテキストタスクを使用することです。
本手法は、非監視および自己監視の異常検出設定におけるベースラインを上回っていることを示した。
論文 参考訳(メタデータ) (2021-02-19T12:32:58Z) - Self-supervised driven consistency training for annotation efficient
histopathology image analysis [13.005873872821066]
大きなラベル付きデータセットでニューラルネットワークをトレーニングすることは、計算病理学において依然として支配的なパラダイムである。
本研究では,非教師付き表現学習のための強力な監視信号を学ぶために,ヒストロジ全体スライディング画像の背景となる多段階的文脈的手がかりを利用する自己教師付きプレテキストタスクを提案する。
また,タスク固有の未ラベルデータとの予測整合性に基づいて,事前学習した表現を下流タスクに効果的に転送することを学ぶ教師による半教師付き一貫性パラダイムを提案する。
論文 参考訳(メタデータ) (2021-02-07T19:46:21Z) - Interpretable Anomaly Detection with Mondrian P{\'o}lya Forests on Data
Streams [6.177270420667713]
スケールでの異常検出は、非常に困難な実用性の問題である。
最近の研究は、異常検出のためのデータを要約するために、(ランダムな)$k$emphd-treesのバリエーションを合体させてきた。
これらの手法は、容易に解釈できないアドホックスコア関数に依存している。
我々はこれらの手法をモンドリアンポリアフォレストと呼ぶ確率的枠組みでコンテキスト化する。
論文 参考訳(メタデータ) (2020-08-04T13:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。