論文の概要: From Monte Carlo to neural networks approximations of boundary value problems
- arxiv url: http://arxiv.org/abs/2209.01432v3
- Date: Sat, 10 Aug 2024 04:55:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 01:29:38.994169
- Title: From Monte Carlo to neural networks approximations of boundary value problems
- Title(参考訳): モンテカルロから境界値問題のニューラルネットワーク近似へ
- Authors: Lucian Beznea, Iulian Cimpean, Oana Lupascu-Stamate, Ionel Popescu, Arghir Zarnescu,
- Abstract要約: ポアソン方程式の解はモンテカルロ法により超ノルムで数値的に近似できることを示す。
また、得られたモンテカルロ解法は、ポアソン問題に対する建設的なReLUディープニューラルネットワーク(DNN)の解法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we study probabilistic and neural network approximations for solutions to Poisson equation subject to Holder data in general bounded domains of $\mathbb{R}^d$. We aim at two fundamental goals. The first, and the most important, we show that the solution to Poisson equation can be numerically approximated in the sup-norm by Monte Carlo methods, and that this can be done highly efficiently if we use a modified version of the walk on spheres algorithm as an acceleration method. This provides estimates which are efficient with respect to the prescribed approximation error and with polynomial complexity in the dimension and the reciprocal of the error. A crucial feature is that the overall number of samples does not not depend on the point at which the approximation is performed. As a second goal, we show that the obtained Monte Carlo solver renders in a constructive way ReLU deep neural network (DNN) solutions to Poisson problem, whose sizes depend at most polynomialy in the dimension $d$ and in the desired error. In fact we show that the random DNN provides with high probability a small approximation error and low polynomial complexity in the dimension.
- Abstract(参考訳): 本稿では,ポアソン方程式の一般有界領域におけるホルダーデータに対する解の確率的およびニューラルネットワーク近似について検討する。
私たちは2つの基本的な目標を目指しています。
一つ目は、ポアソン方程式の解はモンテカルロ法によって超ノルムで数値的に近似できること、また、ウォーク・オン・スフィアズ・アルゴリズムの修正版を加速法として用いた場合、これを効率的に行うことができることである。
これにより、所定の近似誤差と、誤差の次元および逆数における多項式の複雑さに対して効率的な推定値が得られる。
重要な特徴は、サンプルの総数は近似が実行される点に依存しないことである。
第二の目的として、得られたモンテカルロ解法はポアソン問題に対して建設的な方法でReLUディープニューラルネットワーク(DNN)解を描画し、そのサイズは次元$d$と所望の誤差のほとんどの多項式に依存することを示した。
実際、ランダムDNNは、その次元における小さな近似誤差と低い多項式複雑性を高い確率で提供することを示す。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
本稿では,超パラメトリック化された2層ニューラルネットワークの無限次元関数クラス上で定義される最小最適化問題について検討する。
i) 勾配降下指数アルゴリズムの収束と, (ii) ニューラルネットワークの表現学習に対処する。
その結果、ニューラルネットワークによって誘導される特徴表現は、ワッサーシュタイン距離で測定された$O(alpha-1)$で初期表現から逸脱することが許された。
論文 参考訳(メタデータ) (2024-04-18T16:46:08Z) - Polynomial-Time Solutions for ReLU Network Training: A Complexity
Classification via Max-Cut and Zonotopes [70.52097560486683]
我々は、ReLUネットワークの近似の難しさがマックス・カッツ問題の複雑さを反映しているだけでなく、特定の場合において、それと完全に一致することを証明した。
特に、$epsilonleqsqrt84/83-1approx 0.006$とすると、目的値に関して相対誤差$epsilon$でReLUネットワーク対象の近似グローバルデータセットを見つけることはNPハードであることが示される。
論文 参考訳(メタデータ) (2023-11-18T04:41:07Z) - A multiobjective continuation method to compute the regularization path of deep neural networks [1.3654846342364308]
数値効率を保証し、モデルの解釈性を改善し、堅牢性を向上させるため、ディープニューラルネットワーク(DNN)では、スパシティは高い特徴である。
本稿では,数百万のパラメータを持つ高次元勾配に対して,上述の目的に対するスパースフロント全体を極めて効率的な方法で実現するアルゴリズムを提案する。
正規化パスの知識がネットワークパラメトリゼーションを十分に一般化することを示す。
論文 参考訳(メタデータ) (2023-08-23T10:08:52Z) - Bayesian polynomial neural networks and polynomial neural ordinary
differential equations [4.550705124365277]
ニューラルネットワークとニューラル常微分方程式(ODE)によるシンボリック回帰は、多くの科学・工学問題の方程式回復のための強力なアプローチである。
これらの手法はモデルパラメータの点推定を提供しており、現在ノイズの多いデータに対応できない。
この課題は、ラプラス近似、マルコフ連鎖モンテカルロサンプリング法、ベイズ変分推定法の開発と検証によって解決される。
論文 参考訳(メタデータ) (2023-08-17T05:42:29Z) - Advancing Algorithm to Scale and Accurately Solve Quantum Poisson
Equation on Near-term Quantum Hardware [0.0]
本稿では,ポアソン方程式を高精度かつ動的に調整可能な問題サイズで解くための高度な量子アルゴリズムを提案する。
特に,本研究では,非truncated 固有値を実装することにより,解の精度を保証する高度な回路を提案する。
提案アルゴリズムは,解の精度を高めるだけでなく,より実用的でスケーラブルな回路を構成する。
論文 参考訳(メタデータ) (2022-10-29T18:50:40Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
分割関数やMAP推定をペアワイズMRFで効率的に計算する手法を提案する。
一般のバイナリMRFから完全多クラス設定への半定緩和を拡張し、解法を用いて再び効率的に解けるようなコンパクトな半定緩和を開発する。
論文 参考訳(メタデータ) (2020-12-04T15:36:29Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
我々は、$tildeO(L5/6 T2/3)$ regretで最適な複雑性に適応するメタアルゴリズムを提案する。
また、メタアルゴリズムは、インスタンス依存の後悔境界を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-11-19T10:00:54Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Solving high-dimensional eigenvalue problems using deep neural networks:
A diffusion Monte Carlo like approach [14.558626910178127]
固有値問題は、演算子によって誘導される半群フローの固定点問題として再構成される。
この方法は拡散モンテカルロと同様の精神を持つが、ニューラル・ネットワーク・アンサッツによる固有関数への直接近似を増大させる。
我々の手法はいくつかの数値例で正確な固有値と固有関数の近似を提供することができる。
論文 参考訳(メタデータ) (2020-02-07T03:08:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。