論文の概要: Solving Poisson Equations using Neural Walk-on-Spheres
- arxiv url: http://arxiv.org/abs/2406.03494v1
- Date: Wed, 5 Jun 2024 17:59:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 17:12:15.829469
- Title: Solving Poisson Equations using Neural Walk-on-Spheres
- Title(参考訳): ニューラルウォーク・オン・スフェールを用いたポアソン方程式の解法
- Authors: Hong Chul Nam, Julius Berner, Anima Anandkumar,
- Abstract要約: 高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
- 参考スコア(独自算出の注目度): 80.1675792181381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations. Leveraging stochastic representations and Walk-on-Spheres methods, we develop novel losses for neural networks based on the recursive solution of Poisson equations on spheres inside the domain. The resulting method is highly parallelizable and does not require spatial gradients for the loss. We provide a comprehensive comparison against competing methods based on PINNs, the Deep Ritz method, and (backward) stochastic differential equations. In several challenging, high-dimensional numerical examples, we demonstrate the superiority of NWoS in accuracy, speed, and computational costs. Compared to commonly used PINNs, our approach can reduce memory usage and errors by orders of magnitude. Furthermore, we apply NWoS to problems in PDE-constrained optimization and molecular dynamics to show its efficiency in practical applications.
- Abstract(参考訳): 高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
確率的表現とウォーク・オン・スフェール法を利用して、領域内の球面上のポアソン方程式の再帰解に基づいて、ニューラルネットワークに新たな損失を生じさせる。
得られた手法は高い並列化が可能であり、損失に対して空間勾配を必要としない。
本稿では、PINN、Deep Ritz法、および(後方)確率微分方程式に基づく競合する手法とを総合的に比較する。
難解で高次元の数値的な例では、NWoSの精度、速度、計算コストの優位性を実証する。
一般的に使われているPINNと比較して、我々の手法はメモリ使用量やエラーを桁違いに削減することができる。
さらに,PDE制約最適化と分子動力学の問題に対してNWoSを適用し,その効率性を示す。
関連論文リスト
- Solving partial differential equations with sampled neural networks [1.8590821261905535]
偏微分方程式(PDE)に対する解の近似は計算科学や工学において重要な問題である。
データに依存しない確率分布から、アンザッツネットワークの隠れた重みとバイアスをサンプリングすることで、両課題を進展させる方法について論じる。
論文 参考訳(メタデータ) (2024-05-31T14:24:39Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Multilevel CNNs for Parametric PDEs [0.0]
偏微分方程式に対する多段階解法の概念とニューラルネットワークに基づくディープラーニングを組み合わせる。
より詳細な理論的解析により,提案アーキテクチャは乗算Vサイクルを任意の精度で近似できることを示した。
最先端のディープラーニングベースの解法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-01T21:11:05Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Learning Subgrid-scale Models with Neural Ordinary Differential
Equations [0.39160947065896795]
偏微分方程式(PDE)をシミュレートする際のサブグリッドスケールモデル学習のための新しい手法を提案する。
このアプローチでは、ニューラルネットワークは粗大から細小のグリッドマップを学習するために使用され、これはサブグリッドスケールのパラメータ化と見なすことができる。
提案手法はNODEの利点を継承し,サブグリッドスケールのパラメータ化,近似結合演算子,低次解法の効率向上に利用することができる。
論文 参考訳(メタデータ) (2022-12-20T02:45:09Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - Solving Allen-Cahn and Cahn-Hilliard Equations using the Adaptive
Physics Informed Neural Networks [5.031093893882574]
本稿では, ディープニューラルネットワークを用いて, アレン・カーン方程式とカーン・ヒリアード方程式の自動数値解法を設計することに焦点を当てる。
PINNの近似能力を高める様々な手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T03:49:59Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。