論文の概要: Incremental Permutation Feature Importance (iPFI): Towards Online
Explanations on Data Streams
- arxiv url: http://arxiv.org/abs/2209.01939v1
- Date: Mon, 5 Sep 2022 12:34:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 12:51:19.056984
- Title: Incremental Permutation Feature Importance (iPFI): Towards Online
Explanations on Data Streams
- Title(参考訳): iPFI(Incremental Permutation Feature Importance) - データストリームのオンライン説明に向けて
- Authors: Fabian Fumagalli (1), Maximilian Muschalik (2), Eyke H\"ullermeier
(2), Barbara Hammer (1) ((1) Bielefeld University, Bielefeld, Germany, (2)
LMU Munich, Munich, Germany)
- Abstract要約: 私たちはデータを段階的にサンプリングし、バッチモードではなく漸進的に学習する動的なシナリオに興味を持っています。
本研究では,特徴量重要度(PFI)に類似した特徴量の特徴残差化に基づく,特徴量重要度(FI)尺度の効率的なインクリメンタルアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) has mainly focused on static
learning scenarios so far. We are interested in dynamic scenarios where data is
sampled progressively, and learning is done in an incremental rather than a
batch mode. We seek efficient incremental algorithms for computing feature
importance (FI) measures, specifically, an incremental FI measure based on
feature marginalization of absent features similar to permutation feature
importance (PFI). We propose an efficient, model-agnostic algorithm called iPFI
to estimate this measure incrementally and under dynamic modeling conditions
including concept drift. We prove theoretical guarantees on the approximation
quality in terms of expectation and variance. To validate our theoretical
findings and the efficacy of our approaches compared to traditional batch PFI,
we conduct multiple experimental studies on benchmark data with and without
concept drift.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、主に静的学習シナリオに焦点を当てている。
私たちは、データが徐々にサンプリングされ、学習がバッチモードではなくインクリメンタルに行われる動的シナリオに興味を持っています。
本研究では,PFI(permutation feature importance)に類似した特徴量の特徴残差化に基づく,特徴量重要度(FI)尺度の効率的なインクリメンタルアルゴリズムを提案する。
概念ドリフトを含む動的モデリング条件下で,iPFIと呼ばれる効率的なモデルに依存しないアルゴリズムを提案する。
我々は予測と分散の観点から近似品質の理論的保証を証明する。
従来のバッチPFIと比較して,提案手法の理論的結果と有効性を検証するため,概念ドリフトを伴わないベンチマークデータについて,複数の実験を行った。
関連論文リスト
- Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
論文 参考訳(メタデータ) (2024-03-18T14:51:19Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - iSAGE: An Incremental Version of SAGE for Online Explanation on Data
Streams [8.49072000414555]
iSAGEは、SAGEの時間およびメモリ効率のインクリメンタル化である。
iSAGE は SAGE と同様の理論的性質を持つことを示す。
論文 参考訳(メタデータ) (2023-03-02T11:51:54Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Data Augmentation through Expert-guided Symmetry Detection to Improve
Performance in Offline Reinforcement Learning [0.0]
マルコフ決定過程(MDP)の動的モデルのオフライン推定は非自明な作業である。
近年の研究では、密度推定法に依存する専門家誘導パイプラインが、決定論的環境において、この構造を効果的に検出できることが示されている。
学習したMDPを解き、実際の環境に最適化されたポリシーを適用すると、前者の結果が性能改善につながることを示す。
論文 参考訳(メタデータ) (2021-12-18T14:32:32Z) - Understanding the Impact of Data Distribution on Q-learning with
Function Approximation [3.666599339851663]
関数近似を用いて,データ分布とQラーニングに基づくアルゴリズムの相互作用について検討する。
我々は,Q-ラーニングアルゴリズムの性能におけるデータ分布の影響を強調した,新しい4状態MDPを提案する。
オフライン深層Q-ネットワークアルゴリズムの性能に及ぼすデータ分散特性の影響を実験的に評価する。
論文 参考訳(メタデータ) (2021-11-23T10:13:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。