論文の概要: Fast geometric trim fitting using partial incremental sorting and
accumulation
- arxiv url: http://arxiv.org/abs/2209.02034v1
- Date: Mon, 5 Sep 2022 16:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 14:08:10.811589
- Title: Fast geometric trim fitting using partial incremental sorting and
accumulation
- Title(参考訳): 部分的インクリメンタルソートと蓄積を用いた高速幾何トリムフィッティング
- Authors: Min Li and Laurent Kneip
- Abstract要約: 本稿では, 影響を受ける幾何回帰問題におけるロバストなトリムフィッティングの効率向上に寄与するアルゴリズムを提案する。
この手法はクイックソートアルゴリズムに依存し,2つの重要な知見を提示する。
線形嵌合問題に加えて, 閉形式, 非線形エネルギー最小化問題にも適用可能であることを示す。
- 参考スコア(独自算出の注目度): 29.115335340381765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithmic contribution to improve the efficiency of robust
trim-fitting in outlier affected geometric regression problems. The method
heavily relies on the quick sort algorithm, and we present two important
insights. First, partial sorting is sufficient for the incremental calculation
of the x-th percentile value. Second, the normal equations in linear fitting
problems may be updated incrementally by logging swap operations across the
x-th percentile boundary during sorting. Besides linear fitting problems, we
demonstrate how the technique can be additionally applied to closed-form,
non-linear energy minimization problems, thus enabling efficient trim fitting
under geometrically optimal objectives. We apply our method to two distinct
camera resectioning algorithms, and demonstrate highly efficient and reliable,
geometric trim fitting.
- Abstract(参考訳): 本稿では,幾何学的回帰問題に対するロバストなトリムフィッティングの効率を改善するためのアルゴリズム的貢献について述べる。
この手法はクイックソートアルゴリズムに大きく依存しており,二つの重要な知見を提示する。
第一に、部分的ソートは x-パーセンタイル値のインクリメンタルな計算に十分である。
第二に、線形フィッティング問題における正規方程式は、ソート中に x-th percentile 境界を越えてスワップ演算をロギングすることで漸進的に更新することができる。
線形フィッティング問題に加えて,この手法を閉形式,非線形エネルギー最小化問題に適用し,幾何学的最適目標の下での効率的なトリムフィッティングを実現する方法を示す。
本手法を2つの異なるカメラ切除アルゴリズムに適用し,高効率で信頼性の高い幾何学的トリムフィッティングを示す。
関連論文リスト
- Closing the Computational-Query Depth Gap in Parallel Stochastic Convex Optimization [26.36906884097317]
我々は,リプシッツ,凸関数を次数次オラクルで最小化するための新しい並列アルゴリズムを開発した。
その結果,最もよく知られた問合せ深度と並列アルゴリズムの最もよく知られた計算深度とのギャップを埋めることができた。
論文 参考訳(メタデータ) (2024-06-11T15:41:48Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
信頼領域(TR)と立方体を用いた適応正則化は、非常に魅力的な理論的性質を持つことが証明されている。
TR法とARC法はヘッセン関数,勾配関数,関数値の非コンパクトな計算を同時に行うことができることを示す。
論文 参考訳(メタデータ) (2023-10-18T10:29:58Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Accelerated nonlinear primal-dual hybrid gradient algorithms with
applications to machine learning [0.0]
原始双対ハイブリッド勾配(PDHG)は、サドル点構造を持つ凸最適化問題をより小さなサブプロブレムに分割する一階法である。
PDHGは、手前の問題に対して微調整されたステップサイズパラメータを必要とする。
我々は,機械学習に関連する幅広い最適化問題に対して,PDHGアルゴリズムの高速化された非線形変種を導入する。
論文 参考訳(メタデータ) (2021-09-24T22:37:10Z) - Hybrid Trilinear and Bilinear Programming for Aligning Partially
Overlapping Point Sets [85.71360365315128]
多くの応用において、部分重なり合う点集合が対応するRPMアルゴリズムに不変であるようなアルゴリズムが必要である。
まず、目的が立方体有界関数であることを示し、次に、三線型および双線型単相変換の凸エンベロープを用いて、その下界を導出する。
次に、変換変数上の分岐のみを効率よく実行するブランチ・アンド・バウンド(BnB)アルゴリズムを開発する。
論文 参考訳(メタデータ) (2021-01-19T04:24:23Z) - Aligning Partially Overlapping Point Sets: an Inner Approximation
Algorithm [80.15123031136564]
変換の値に関する事前情報がない点集合を整列するロバストな手法を提案する。
我々のアルゴリズムは変換の正規化を必要とせず、変換の値に関する事前情報がない状況に対処できる。
実験により,提案手法が最先端のアルゴリズムよりも高いロバスト性を示した。
論文 参考訳(メタデータ) (2020-07-05T15:23:33Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - SONIA: A Symmetric Blockwise Truncated Optimization Algorithm [2.9923891863939938]
本研究は, 経験的リスクに対する新しいアルゴリズムを提案する。
このアルゴリズムは、一部分空間における二階探索型更新を計算し、1階探索法と2階探索法の間のギャップを埋める。
論文 参考訳(メタデータ) (2020-06-06T19:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。