論文の概要: Trust in Language Grounding: a new AI challenge for human-robot teams
- arxiv url: http://arxiv.org/abs/2209.02066v1
- Date: Mon, 5 Sep 2022 17:23:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 13:15:59.384865
- Title: Trust in Language Grounding: a new AI challenge for human-robot teams
- Title(参考訳): 言語グラウンディングの信頼:人間ロボットチームのための新しいAIチャレンジ
- Authors: David M. Bossens and Christine Evers
- Abstract要約: 調査は、言語基盤における新たな信頼分野に焦点を当てている。
調査には、AI技術、データセット、ユーザインターフェースの観点からの言語基盤研究の概要が含まれている。
言語接地に関連する6つの信頼要因を,人間ロボットのクリーニングチームで実験的に検証した。
- 参考スコア(独自算出の注目度): 14.46779433267854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenge of language grounding is to fully understand natural language
by grounding language in real-world referents. While AI techniques are
available, the widespread adoption and effectiveness of such technologies for
human-robot teams relies critically on user trust. This survey provides three
contributions relating to the newly emerging field of trust in language
grounding, including a) an overview of language grounding research in terms of
AI technologies, data sets, and user interfaces; b) six hypothesised trust
factors relevant to language grounding, which are tested empirically on a
human-robot cleaning team; and c) future research directions for trust in
language grounding.
- Abstract(参考訳): 言語基盤化の課題は、現実世界のレファレントで言語を基礎化することで自然言語を完全に理解することである。
AI技術は利用可能だが、人間ロボットチームにおけるそのような技術の普及と有効性は、ユーザの信頼に極めて依存している。
本調査は,新たな言語基盤の信頼分野に関する3つのコントリビューションを提供する。
a)AI技術,データセット及びユーザインターフェースの観点からの言語基礎研究の概要
b) 言語接地に関連する6つの仮説付き信頼要因は,人間とロボットの清掃チームにおいて実証的に試験される。
c)言語基盤の信頼に関する今後の研究の方向性
関連論文リスト
- Generative AI, Pragmatics, and Authenticity in Second Language Learning [0.0]
生成的AI(Artificial Intelligence)を言語学習と教育に統合する上で、明らかなメリットがある。
しかし、AIシステムが人間の言語に耐える方法のため、人間と同じ社会的認識を持つ言語を使えるような、生きた経験が欠けている。
言語や文化のバイアスは、そのトレーニングデータに基づいて構築されており、主に英語であり、主に西洋の情報源から来ている。
論文 参考訳(メタデータ) (2024-10-18T11:58:03Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPTは、テキストまたは音声形式のチャットを通じて非公式な第二言語プラクティスを提供することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
論文 参考訳(メタデータ) (2024-03-29T14:55:40Z) - Grounding Gaps in Language Model Generations [67.79817087930678]
大規模言語モデルが人間の接地を反映したテキストを生成するかどうかを考察する。
人間に比べ、LLMは会話の基盤を減らした言語を生成する。
同定された接地ギャップの根源を理解するために,命令チューニングと選好最適化の役割について検討する。
論文 参考訳(メタデータ) (2023-11-15T17:40:27Z) - Towards More Human-like AI Communication: A Review of Emergent
Communication Research [0.0]
創発的コミュニケーション(英: Emergent Communication, Emecom)は、自然言語を利用できる人工エージェントの開発を目的とした研究分野である。
本稿では,文献の共通点と,それらが人間同士の相互作用にどのように関係しているかを概説する。
2つのサブカテゴリを特定し、その特性とオープンな課題を強調します。
論文 参考訳(メタデータ) (2023-08-01T14:43:10Z) - ARNOLD: A Benchmark for Language-Grounded Task Learning With Continuous
States in Realistic 3D Scenes [72.83187997344406]
ARNOLDは、現実的な3Dシーンにおける連続状態による言語によるタスク学習を評価するベンチマークである。
ARNOLDは、オブジェクト状態の理解と継続的な目標のための学習ポリシーを含む8つの言語条件のタスクで構成されている。
論文 参考訳(メタデータ) (2023-04-09T21:42:57Z) - No Language Left Behind: Scaling Human-Centered Machine Translation [69.28110770760506]
低レベルの言語と高レベルの言語のパフォーマンスギャップを狭めるためのデータセットとモデルを作成します。
何千ものタスクをトレーニングしながらオーバーフィッティングに対処するために,複数のアーキテクチャとトレーニングの改善を提案する。
本モデルでは,従来の最先端技術と比較して,BLEUの44%の改善を実現している。
論文 参考訳(メタデータ) (2022-07-11T07:33:36Z) - Human Heuristics for AI-Generated Language Are Flawed [8.465228064780744]
我々は,最も個人的かつ連続的な言語である動詞の自己表現が,AIによって生成されたかを検討した。
我々は,これらの単語がAI生成言語の人間の判断を予測可能で操作可能であることを実験的に実証した。
我々は、AIアクセントのようなソリューションについて議論し、AIによって生成された言語の誤認の可能性を減らす。
論文 参考訳(メタデータ) (2022-06-15T03:18:56Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
大規模な言語モデルは、世界に関する豊富な意味知識を符号化することができる。
このような知識は、自然言語で表現された高レベルで時間的に拡張された命令を動作させようとするロボットにとって極めて有用である。
低レベルのスキルを大規模言語モデルと組み合わせることで,言語モデルが複雑かつ時間的に拡張された命令を実行する手順について高いレベルの知識を提供することを示す。
論文 参考訳(メタデータ) (2022-04-04T17:57:11Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
本研究では,ロボットインタラクションの大規模なオフラインデータセットから視覚に基づく操作タスクを学習する問題について検討する。
クラウドソースの自然言語ラベルを用いたオフラインロボットデータセットの活用を提案する。
提案手法は目標画像仕様と言語条件付き模倣技術の両方を25%以上上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-02T17:42:13Z) - ReferentialGym: A Nomenclature and Framework for Language Emergence &
Grounding in (Visual) Referential Games [0.30458514384586394]
自然言語は、人間が情報を伝達し、共通の目標に向けて協力するための強力なツールである。
計算言語学者は、言語ゲームによって引き起こされる人工言語の出現を研究している。
AIコミュニティは、言語の出現と、より優れたヒューマンマシンインターフェースに向けた基礎研究を開始した。
論文 参考訳(メタデータ) (2020-12-17T10:22:15Z) - Experience Grounds Language [185.73483760454454]
言語理解研究は、言語が記述する物理的世界と、それが促進する社会的相互作用とを関連づけることに失敗している。
テキストだけで訓練された後にタスクに取り組むための言語処理モデルの驚くべき効果にもかかわらず、成功した言語コミュニケーションは世界の共有経験に依存している。
論文 参考訳(メタデータ) (2020-04-21T16:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。