論文の概要: Knowledge-enhanced Iterative Instruction Generation and Reasoning for
Knowledge Base Question Answering
- arxiv url: http://arxiv.org/abs/2209.03005v1
- Date: Wed, 7 Sep 2022 09:02:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-08 12:23:52.744420
- Title: Knowledge-enhanced Iterative Instruction Generation and Reasoning for
Knowledge Base Question Answering
- Title(参考訳): 知識ベース質問応答のための知識強化反復的指導生成と推論
- Authors: Haowei Du, Quzhe Huang, Chen Zhang, and Dongyan Zhao
- Abstract要約: マルチホップ知識ベース質問回答は、質問に言及されたトピックエンティティからのいくつかのホップである知識ベースで回答エンティティを見つけることを目的としている。
既存のRetrievalベースのアプローチでは、まず質問から指示を生成し、知識グラフ上のマルチホップ推論をガイドする。
我々は2つのマルチホップKBQAベンチマークの実験を行い、既存のアプローチを上回り、新しい最先端技術となった。
- 参考スコア(独自算出の注目度): 43.72266327778216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer
entity in a knowledge base which is several hops from the topic entity
mentioned in the question. Existing Retrieval-based approaches first generate
instructions from the question and then use them to guide the multi-hop
reasoning on the knowledge graph. As the instructions are fixed during the
whole reasoning procedure and the knowledge graph is not considered in
instruction generation, the model cannot revise its mistake once it predicts an
intermediate entity incorrectly. To handle this, we propose KBIGER(Knowledge
Base Iterative Instruction GEnerating and Reasoning), a novel and efficient
approach to generate the instructions dynamically with the help of reasoning
graph. Instead of generating all the instructions before reasoning, we take the
(k-1)-th reasoning graph into consideration to build the k-th instruction. In
this way, the model could check the prediction from the graph and generate new
instructions to revise the incorrect prediction of intermediate entities. We do
experiments on two multi-hop KBQA benchmarks and outperform the existing
approaches, becoming the new-state-of-the-art. Further experiments show our
method does detect the incorrect prediction of intermediate entities and has
the ability to revise such errors.
- Abstract(参考訳): KBQA (Multi-hop Knowledge Base Question Answering) は、質問に言及されたトピックエンティティからのいくつかのホップである知識ベースで回答エンティティを見つけることを目的としている。
既存のRetrievalベースのアプローチでは、まず質問から指示を生成し、知識グラフ上のマルチホップ推論をガイドする。
命令は推論手順全体の間に固定され、知識グラフは命令生成では考慮されないため、中間のエンティティが誤って予測されると、モデルがその誤りを修正できない。
そこで我々はKBIGER(Knowledge Base Iterative Instruction GEnerating and Reasoning)を提案する。
推論の前にすべての命令を生成する代わりに、(k-1)-th推論グラフを使ってk-th命令を構築する。
このようにして、モデルはグラフから予測をチェックし、中間エンティティの誤った予測を修正するための新しい命令を生成することができる。
我々は2つのマルチホップKBQAベンチマークの実験を行い、既存のアプローチを上回り、新しい最先端技術となった。
さらに,中間エンティティの不正確な予測を検知し,その誤りを修正できることを示す実験を行った。
関連論文リスト
- Question-guided Knowledge Graph Re-scoring and Injection for Knowledge Graph Question Answering [27.414670144354453]
KGQAは知識グラフに格納された構造化情報を活用することで自然言語の質問に答える。
本稿では,Q-KGR(Q-Guided Knowledge Graph Re-scoring method)を提案する。
また,大規模言語モデルに再認識された知識グラフを注入するパラメータ効率の高い手法であるKnowformerを導入し,事実推論を行う能力を高める。
論文 参考訳(メタデータ) (2024-10-02T10:27:07Z) - KnowFormer: Revisiting Transformers for Knowledge Graph Reasoning [10.445709698341682]
メッセージパッシングの観点から知識グラフの推論を行うために KnowFormer.KnowFormer を提案する。
構造情報を自己認識機構に組み込むため,クエリ,キー,値を計算する構造認識モジュールを導入する。
実験結果から, トランスダクティブベンチマークとインダクティブベンチマークの両方において, 顕著なベースライン手法と比較して, KnowFormer の優れた性能を示した。
論文 参考訳(メタデータ) (2024-09-19T16:08:10Z) - Retrieved In-Context Principles from Previous Mistakes [55.109234526031884]
In-context Learning (ICL) は、入力出力の正しい例を用いて、下流のタスクにLarge Language Models (LLM) を適用するのに役立っている。
近年の進歩は、ミスから派生した原則により、モデルパフォーマンスの改善を試みている。
本稿では,新しい教師学習フレームワークであるRetrieved In-Context Principles (RICP)を提案する。
論文 参考訳(メタデータ) (2024-07-08T07:32:26Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Open-Set Knowledge-Based Visual Question Answering with Inference Paths [79.55742631375063]
知識に基づく視覚的質問回答(KB-VQA)の目的は、外部知識ベースの助けを借りて質問に対する正しい回答を提供することである。
KB-VQA, Graph pATH ranker (GATHER for brevity) の新しいレトリバーランカパラダイムを提案する。
具体的には、グラフの構築、プルーニング、パスレベルのランク付けが含まれており、正確な回答を検索するだけでなく、推論パスを提供して推論プロセスを説明する。
論文 参考訳(メタデータ) (2023-10-12T09:12:50Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
我々は、反事実的、対照的な説明の分析に焦点をあてる。
本稿では,新しい逆翻訳に基づく評価手法を提案する。
本研究では, 予測モデルと説明モデルの両方の振る舞いについて, 反事実を反復的に説明者に与えることで, 価値ある洞察を得ることができることを示す。
論文 参考訳(メタデータ) (2023-05-26T16:04:28Z) - Remembering for the Right Reasons: Explanations Reduce Catastrophic
Forgetting [100.75479161884935]
我々は、RRR(Remembering for the Right Reasons)と呼ばれる新しいトレーニングパラダイムを提案する。
RRRは、各例の視覚モデル説明をバッファに格納し、モデルが予測に「正しい理由」を持つことを保証する。
メモリや正規化ベースのアプローチでRRRを容易に追加できることを示し、その結果、忘れを少なくする。
論文 参考訳(メタデータ) (2020-10-04T10:05:27Z) - Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question
Answering [35.40919477319811]
本稿では,事前学習された言語モデルにマルチホップ関係推論モジュールを組み込む新しい知識認識手法を提案する。
外部知識グラフから抽出したサブグラフに対して、マルチホップ、マルチリレーショナル推論を行う。
パスベースの推論手法とグラフニューラルネットワークを統合して、より優れた解釈性とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2020-05-01T23:10:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。