論文の概要: Non-Variational Quantum Random Access Optimization with Alternating Operator Ansatz
- arxiv url: http://arxiv.org/abs/2502.04277v1
- Date: Thu, 06 Feb 2025 18:25:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-07 14:31:31.611521
- Title: Non-Variational Quantum Random Access Optimization with Alternating Operator Ansatz
- Title(参考訳): 交代演算子アンザッツを用いた非可変量子ランダムアクセス最適化
- Authors: Zichang He, Rudy Raymond, Ruslan Shaydulin, Marco Pistoia,
- Abstract要約: 量子ランダムアクセス最適化(QRAO)は、量子最適化の空間要求を減らすために提案されている。
インスタンスに依存しない'固定'パラメータは優れた性能を示し、変分パラメータ最適化の必要性を排除した。
本研究は,早期のフォールトトレラント量子コンピュータ上でのQRAOの実践的実行の道を開くものである。
- 参考スコア(独自算出の注目度): 3.5773675235837974
- License:
- Abstract: Solving hard optimization problems is one of the most promising application domains for quantum computers due to the ubiquity of such problems in industry and the availability of broadly applicable quantum speedups. However, the ability of near-term quantum computers to tackle industrial-scale optimization problems is limited by their size and the overheads of quantum error correction. Quantum Random Access Optimization (QRAO) has been proposed to reduce the space requirements of quantum optimization. However, to date QRAO has only been implemented using variational algorithms, which suffer from the need to train instance-specific variational parameters, making them difficult to scale. We propose and benchmark a non-variational approach to QRAO based on the Quantum Alternating Operator Ansatz (QAOA) for the MaxCut problem. We show that instance-independent ``fixed'' parameters achieve good performance, removing the need for variational parameter optimization. Additionally, we evaluate different design choices, such as various mixers and initial states, as well as QAOA operator implementations when customizing for QRAO, and identify a strategy that performs well in practice. Our results pave the way for the practical execution of QRAO on early fault-tolerant quantum computers.
- Abstract(参考訳): ハード最適化問題の解決は、業界におけるそのような問題の多様さと、広く適用可能な量子スピードアップの可用性により、量子コンピュータの最も有望な応用分野の1つである。
しかし、産業規模の最適化問題に取り組むための短期量子コンピュータの能力は、そのサイズと量子エラー補正のオーバーヘッドによって制限される。
量子ランダムアクセス最適化(QRAO)は、量子最適化の空間要求を減らすために提案されている。
しかし、これまでQRAOは変分アルゴリズムを使用してのみ実装されており、これはインスタンス固有の変分パラメータをトレーニングする必要があるため、拡張が困難である。
我々は、MaxCut問題に対する量子交互演算子 Ansatz (QAOA) に基づくQRAOに対する非変分的アプローチを提案し、ベンチマークする。
インスタンスに依存しない ``fixed'' パラメータは優れた性能を示し、変動パラメータの最適化の必要性を排除した。
さらに、様々なミキサーや初期状態、QRAOをカスタマイズする際のQAOA演算子の実装など、さまざまな設計選択を評価し、実際にうまく機能する戦略を特定する。
本研究は,早期のフォールトトレラント量子コンピュータ上でのQRAOの実践的実行の道を開くものである。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
問題の大きさが大きくなるにつれて、量子資源のスケーリングが一定の成功確率に達するか検討する。
この結果から,ハイブリッド量子古典アルゴリズムは古典外ループの破壊力を回避する必要がある可能性が示唆された。
論文 参考訳(メタデータ) (2023-07-31T18:01:15Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Constrained Quantum Optimization for Extractive Summarization on a
Trapped-ion Quantum Computer [13.528362112761805]
本稿では,量子ハードウェアの制約を保存する量子最適化アルゴリズムの,これまでで最大の実行方法を示す。
我々は、最大20キュービットと2キュービットゲート深さ最大159の量子進化を制限するXY-QAOA回路を実行する。
本稿では,アルゴリズムのトレードオフと,短期量子ハードウェア上での実行に対する影響について論じる。
論文 参考訳(メタデータ) (2022-06-13T16:21:04Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
変分量子アルゴリズム(VQA)は、特定の計算上の利点を得るために、短期量子マシンを利用する可能性がある。
現代のVQAは、巨大なデータを扱うために単独の量子プロセッサを使用するという伝統によって妨げられている、計算上のオーバーヘッドに悩まされている。
ここでは、この問題に対処するため、効率的な分散最適化手法であるQUDIOを考案する。
論文 参考訳(メタデータ) (2021-06-24T08:18:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
本稿では,NISQ(Noisy Intermediate-Scale Quantum)デバイス上でのチューニングについて述べる。
VQEのケーススタディにおいて、異なる最小値の効率と有効性について分析した。
これまでのほとんどの結果は量子VQE回路のチューニングに集中しているが、量子ノイズの存在下では、古典的な最小化ステップを慎重に選択して正しい結果を得る必要がある。
論文 参考訳(メタデータ) (2020-04-06T21:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。