論文の概要: Implicit Full Waveform Inversion with Deep Neural Representation
- arxiv url: http://arxiv.org/abs/2209.03525v1
- Date: Thu, 8 Sep 2022 01:54:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-09 13:35:19.886172
- Title: Implicit Full Waveform Inversion with Deep Neural Representation
- Title(参考訳): 深部ニューラル表現を用いた入射完全波形インバージョン
- Authors: Jian Sun and Kristopher Innanen
- Abstract要約: 連続的かつ暗黙的に定義されたディープニューラル表現を用いた暗黙完全波形逆変換(IFWI)アルゴリズムを提案する。
理論的および実験的解析は、ランダムな初期モデルが与えられた場合、IFWIが大域的な最小値に収束できることを示している。
IFWIは、様々な2次元地質モデルの実験で実証される、ある程度の堅牢性と強い一般化能力を持っている。
- 参考スコア(独自算出の注目度): 91.3755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Full waveform inversion (FWI) commonly stands for the state-of-the-art
approach for imaging subsurface structures and physical parameters, however,
its implementation usually faces great challenges, such as building a good
initial model to escape from local minima, and evaluating the uncertainty of
inversion results. In this paper, we propose the implicit full waveform
inversion (IFWI) algorithm using continuously and implicitly defined deep
neural representations. Compared to FWI, which is sensitive to the initial
model, IFWI benefits from the increased degrees of freedom with deep learning
optimization, thus allowing to start from a random initialization, which
greatly reduces the risk of non-uniqueness and being trapped in local minima.
Both theoretical and experimental analyses indicates that, given a random
initial model, IFWI is able to converge to the global minimum and produce a
high-resolution image of subsurface with fine structures. In addition,
uncertainty analysis of IFWI can be easily performed by approximating Bayesian
inference with various deep learning approaches, which is analyzed in this
paper by adding dropout neurons. Furthermore, IFWI has a certain degree of
robustness and strong generalization ability that are exemplified in the
experiments of various 2D geological models. With proper setup, IFWI can also
be well suited for multi-scale joint geophysical inversion.
- Abstract(参考訳): フル波形インバージョン(fwi)は、一般に地下構造や物理パラメータをイメージングする最先端のアプローチを指すが、その実装は通常、局所的なミニマから逃れるために良い初期モデルを構築し、反転結果の不確実性を評価するなど、大きな課題に直面している。
本稿では,連続的かつ暗黙的に定義されたディープニューラル表現を用いたIFWIアルゴリズムを提案する。
初期モデルに敏感なfwiと比較して、ifwiは、ディープラーニング最適化による自由度の向上から、ランダムな初期化から始めることができるため、非自然性のリスクを大幅に低減し、局所的なミニマ(英語版)に閉じ込められる。
理論的および実験的解析は、ランダムな初期モデルが与えられた場合、IFWIは世界最小に収束し、微細な構造を持つ地下の高解像度画像を生成することができることを示している。
さらに,様々な深層学習手法を用いてベイズ推定を近似することにより,IFWIの不確実性解析を容易に行うことができる。
さらにIFWIは、様々な2次元地質モデルの実験で実証される、ある程度の堅牢性と強い一般化能力を持っている。
IFWIは適切な設定で、多スケールの共同物理インバージョンにも適している。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - An Unsupervised Deep Learning Approach for the Wave Equation Inverse
Problem [12.676629870617337]
フルウェーブフォーム・インバージョン(FWI)は、高分解能地下物理パラメータを推定する強力な物理画像技術である。
観測の限界、限られたショットや受信機、ランダムノイズなどにより、従来の逆転法は多くの課題に直面している。
物理速度パラメータを正確に再構成することを目的とした教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T08:39:33Z) - Every Parameter Matters: Ensuring the Convergence of Federated Learning
with Dynamic Heterogeneous Models Reduction [22.567754688492414]
クロスデバイス・フェデレーション・ラーニング(FL)は、ユニークなコントリビューションを行う可能性のあるローエンドのクライアントが、リソースのボトルネックのため、大規模なモデルのトレーニングから除外されるという、大きな課題に直面します。
近年,グローバルモデルから縮小サイズのモデルを抽出し,それに応じてローカルクライアントに適用することによって,モデル不均一FLに焦点を当てている。
本稿では,オンラインモデル抽出を用いた不均一FLアルゴリズムの一元化フレームワークを提案し,一般収束解析を初めて提供する。
論文 参考訳(メタデータ) (2023-10-12T19:07:58Z) - Structured Optimal Variational Inference for Dynamic Latent Space Models [16.531262817315696]
動的ネットワークの潜在空間モデルについて検討し、その目的は、ペアの内積と潜在位置のインターセプトを推定することである。
後部推論と計算スケーラビリティのバランスをとるために、構造的平均場変動推論フレームワークを検討する。
論文 参考訳(メタデータ) (2022-09-29T22:10:42Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Revisit Geophysical Imaging in A New View of Physics-informed Generative
Adversarial Learning [2.12121796606941]
完全な波形反転は高分解能地下モデルを生成する。
最小二乗関数を持つFWIは、局所ミニマ問題のような多くの欠点に悩まされる。
偏微分方程式とニューラルネットワークを用いた最近の研究は、2次元FWIに対して有望な性能を示している。
本稿では,波動方程式を識別ネットワークに統合し,物理的に一貫したモデルを正確に推定する,教師なし学習パラダイムを提案する。
論文 参考訳(メタデータ) (2021-09-23T15:54:40Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Generalization bound of globally optimal non-convex neural network
training: Transportation map estimation by infinite dimensional Langevin
dynamics [50.83356836818667]
本稿では,ディープラーニングの最適化を一般化誤差と関連づけて解析する理論フレームワークを提案する。
ニューラルネットワーク最適化分析のための平均場理論やニューラル・タンジェント・カーネル理論のような既存のフレームワークは、そのグローバル収束を示すために、ネットワークの無限幅の限界を取る必要がある。
論文 参考訳(メタデータ) (2020-07-11T18:19:50Z) - DessiLBI: Exploring Structural Sparsity of Deep Networks via
Differential Inclusion Paths [45.947140164621096]
逆スケール空間の差分包摂に基づく新しい手法を提案する。
DessiLBIが早期に「優勝チケット」を発表することを示す。
論文 参考訳(メタデータ) (2020-07-04T04:40:16Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。