Wasserstein Distributional Learning
- URL: http://arxiv.org/abs/2209.04991v1
- Date: Mon, 12 Sep 2022 02:32:17 GMT
- Title: Wasserstein Distributional Learning
- Authors: Chengliang Tang, Nathan Lenssen, Ying Wei, Tian Zheng
- Abstract summary: Wasserstein Distributional Learning (WDL) is a flexible density-on-scalar regression modeling framework.
We show that WDL better characterizes and uncovers the nonlinear dependence of the conditional densities.
We demonstrate the effectiveness of the WDL framework through simulations and real-world applications.
- Score: 5.830831796910439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning conditional densities and identifying factors that influence the
entire distribution are vital tasks in data-driven applications. Conventional
approaches work mostly with summary statistics, and are hence inadequate for a
comprehensive investigation. Recently, there have been developments on
functional regression methods to model density curves as functional outcomes. A
major challenge for developing such models lies in the inherent constraint of
non-negativity and unit integral for the functional space of density outcomes.
To overcome this fundamental issue, we propose Wasserstein Distributional
Learning (WDL), a flexible density-on-scalar regression modeling framework that
starts with the Wasserstein distance $W_2$ as a proper metric for the space of
density outcomes. We then introduce a heterogeneous and flexible class of
Semi-parametric Conditional Gaussian Mixture Models (SCGMM) as the model class
$\mathfrak{F} \otimes \mathcal{T}$. The resulting metric space $(\mathfrak{F}
\otimes \mathcal{T}, W_2)$ satisfies the required constraints and offers a
dense and closed functional subspace. For fitting the proposed model, we
further develop an efficient algorithm based on Majorization-Minimization
optimization with boosted trees. Compared with methods in the previous
literature, WDL better characterizes and uncovers the nonlinear dependence of
the conditional densities, and their derived summary statistics. We demonstrate
the effectiveness of the WDL framework through simulations and real-world
applications.
Related papers
- Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
This paper studies amortized sampling of the posterior over data, $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$, in a model that consists of a diffusion generative model prior $p(mathbfx)$ and a black-box constraint or function $r(mathbfx)$.
We prove the correctness of a data-free learning objective, relative trajectory balance, for training a diffusion model that samples from
arXiv Detail & Related papers (2024-05-31T16:18:46Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Distribution learning via neural differential equations: a nonparametric
statistical perspective [1.4436965372953483]
This work establishes the first general statistical convergence analysis for distribution learning via ODE models trained through likelihood transformations.
We show that the latter can be quantified via the $C1$-metric entropy of the class $mathcal F$.
We then apply this general framework to the setting of $Ck$-smooth target densities, and establish nearly minimax-optimal convergence rates for two relevant velocity field classes $mathcal F$: $Ck$ functions and neural networks.
arXiv Detail & Related papers (2023-09-03T00:21:37Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
We provide the first rigorous analysis on approximation and generalization abilities of diffusion modeling.
We show that when the true density function belongs to the Besov space and the empirical score matching loss is properly minimized, the generated data distribution achieves the nearly minimax optimal estimation rates.
arXiv Detail & Related papers (2023-03-03T11:31:55Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - A data-driven peridynamic continuum model for upscaling molecular
dynamics [3.1196544696082613]
We propose a learning framework to extract, from molecular dynamics data, an optimal Linear Peridynamic Solid model.
We provide sufficient well-posedness conditions for discretized LPS models with sign-changing influence functions.
This framework guarantees that the resulting model is mathematically well-posed, physically consistent, and that it generalizes well to settings that are different from the ones used during training.
arXiv Detail & Related papers (2021-08-04T07:07:47Z) - SODEN: A Scalable Continuous-Time Survival Model through Ordinary
Differential Equation Networks [14.564168076456822]
We propose a flexible model for survival analysis using neural networks along with scalable optimization algorithms.
We demonstrate the effectiveness of the proposed method in comparison to existing state-of-the-art deep learning survival analysis models.
arXiv Detail & Related papers (2020-08-19T19:11:25Z) - Non-parametric Models for Non-negative Functions [48.7576911714538]
We provide the first model for non-negative functions from the same good linear models.
We prove that it admits a representer theorem and provide an efficient dual formulation for convex problems.
arXiv Detail & Related papers (2020-07-08T07:17:28Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
This paper establishes a precise high-dimensional theory for boosting on separable data.
Under a class of statistical models, we provide an exact analysis of the universality error of boosting.
We also explicitly pin down the relation between the boosting test error and the optimal Bayes error.
arXiv Detail & Related papers (2020-02-05T00:24:53Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.