Detecting Driver Drowsiness as an Anomaly Using LSTM Autoencoders
- URL: http://arxiv.org/abs/2209.05269v1
- Date: Mon, 12 Sep 2022 14:25:07 GMT
- Title: Detecting Driver Drowsiness as an Anomaly Using LSTM Autoencoders
- Authors: G\"ulin T\"ufekci, Alper Kayaba\c{s}i, Erdem Akag\"und\"uz, \.Ilkay
Ulusoy
- Abstract summary: An LSTM autoencoder-based architecture is utilized for drowsiness detection with ResNet-34 as feature extractor.
The proposed model achieves detection rate of 0.8740 area under curve (AUC) and is able to provide significant improvements on certain scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, an LSTM autoencoder-based architecture is utilized for
drowsiness detection with ResNet-34 as feature extractor. The problem is
considered as anomaly detection for a single subject; therefore, only the
normal driving representations are learned and it is expected that drowsiness
representations, yielding higher reconstruction losses, are to be distinguished
according to the knowledge of the network. In our study, the confidence levels
of normal and anomaly clips are investigated through the methodology of label
assignment such that training performance of LSTM autoencoder and
interpretation of anomalies encountered during testing are analyzed under
varying confidence rates. Our method is experimented on NTHU-DDD and
benchmarked with a state-of-the-art anomaly detection method for driver
drowsiness. Results show that the proposed model achieves detection rate of
0.8740 area under curve (AUC) and is able to provide significant improvements
on certain scenarios.
Related papers
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
We propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data.
When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present.
arXiv Detail & Related papers (2024-07-09T13:32:33Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Adaptive Thresholding Heuristic for KPI Anomaly Detection [1.57731592348751]
A plethora of outlier detectors have been explored in the time series domain, however, in a business sense, not all outliers are anomalies of interest.
This article proposes an Adaptive Thresholding Heuristic (ATH) to dynamically adjust the detection threshold based on the local properties of the data distribution and adapt to changes in time series patterns.
Experimental results show that ATH is efficient making it scalable for near real time anomaly detection and flexible with forecasters and outlier detectors.
arXiv Detail & Related papers (2023-08-21T06:45:28Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Representation Learning for Content-Sensitive Anomaly Detection in
Industrial Networks [0.0]
This thesis proposes a framework to learn spatial-temporal aspects of raw network traffic in an unsupervised and protocol-agnostic manner.
The learned representations are used to measure the effect on the results of a subsequent anomaly detection.
arXiv Detail & Related papers (2022-04-20T09:22:41Z) - Simple Adaptive Projection with Pretrained Features for Anomaly
Detection [0.0]
We propose a novel adaptation framework including simple linear transformation and self-attention.
Our simple adaptive projection with pretrained features(SAP2) yields a novel anomaly detection criterion.
arXiv Detail & Related papers (2021-12-05T15:29:59Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Interpreting Rate-Distortion of Variational Autoencoder and Using Model
Uncertainty for Anomaly Detection [5.491655566898372]
We build a scalable machine learning system for unsupervised anomaly detection via representation learning.
We revisit VAE from the perspective of information theory to provide some theoretical foundations on using the reconstruction error.
We show empirically the competitive performance of our approach on benchmark datasets.
arXiv Detail & Related papers (2020-05-05T00:03:48Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.