Detection of arbitrary quantum correlations via synthesized quantum
channels
- URL: http://arxiv.org/abs/2206.05883v1
- Date: Mon, 13 Jun 2022 02:27:17 GMT
- Title: Detection of arbitrary quantum correlations via synthesized quantum
channels
- Authors: Ze Wu, Ping Wang, Tianyun Wang, Yuchen Li, Ran Liu, Yuquan Chen,
Xinhua Peng, Ren-Bao Liu, Jiangfeng Du
- Abstract summary: We demonstrate the extraction of arbitrary types of quantum correlations using a quantum-sensing approach based on sequential weak measurement.
We successfully extract the second- and fourth-order correlations of a nuclear-spin target by another nuclear-spin sensor.
The full characterization of quantum correlations provides a new tool for understanding quantum many-body systems.
- Score: 16.1155239067513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum correlations are key information about the structures and dynamics of
quantum many-body systems. There are many types of high-order quantum
correlations with different time orderings, but only a few of them are
accessible to the existing detection methods. Recently, a quantum-sensing
approach based on sequential weak measurement was proposed to selectively
extract arbitrary types of correlations. However, its experimental
implementation is still elusive. Here we demonstrate the extraction of
arbitrary types of quantum correlations. We generalized the original weak
measurement scheme to a protocol using synthesized quantum channels, which can
be applied to more universal scenarios including both single and ensemble
quantum systems. In this quantum channel method, various controls on the
sensors are superimposed to select the sensor-target evolution along a specific
path for measuring a desired quantum correlation. Using the versatility of
nuclear magnetic resonance techniques, we successfully extract the second- and
fourth-order correlations of a nuclear-spin target by another nuclear-spin
sensor. The full characterization of quantum correlations provides a new tool
for understanding quantum many-body systems, exploring fundamental quantum
physics, and developing quantum technologies.
Related papers
- MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification [10.969833959443495]
MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
arXiv Detail & Related papers (2023-07-21T19:33:10Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Quantum Neuronal Sensing of Quantum Many-Body States on a 61-Qubit
Programmable Superconducting Processor [17.470012490921192]
Classifying many-body quantum states with distinct properties and phases of matter is one of the most fundamental tasks in quantum many-body physics.
Here, we propose a new approach called quantum neuronal sensing.
We show that our scheme can efficiently classify two different types of many-body phenomena.
arXiv Detail & Related papers (2022-01-16T03:20:04Z) - Quantum jump metrology in a two-cavity network [0.0]
In interferometry, quantum physics is used to enhance measurement precision.
An alternative approach is quantum metrology jump [L. A. Clark et al., Phys A 99, 022102] which deduces information by continuously monitoring an open quantum system.
It is shown that the proposed approach can exceed the standard quantum limit without the need for complex quantum states being scalable.
arXiv Detail & Related papers (2022-01-12T10:53:24Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Pure State Tomography with Fourier Transformation [3.469001874498102]
Two adaptive protocols are proposed, with their respective quantum circuits.
Experiments on the IBM 5-qubit quantum computer, as well as numerical investigations, demonstrate the feasibility of the proposed protocols.
arXiv Detail & Related papers (2020-08-20T17:13:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.