A Hybrid Physics Machine Learning Approach for Macroscopic Traffic State
Estimation
- URL: http://arxiv.org/abs/2202.01888v2
- Date: Tue, 11 Apr 2023 18:39:31 GMT
- Title: A Hybrid Physics Machine Learning Approach for Macroscopic Traffic State
Estimation
- Authors: Zhao Zhang, Ding Zhao, Xianfeng Terry Yang
- Abstract summary: This paper introduces an innovative traffic state estimation framework.
It uses limited information from traffic sensors as inputs to construct accurate and full-field estimated traffic state.
Experimental results show that the proposed method has been proved to estimate full-field traffic information accurately.
- Score: 20.716261308570555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Full-field traffic state information (i.e., flow, speed, and density) is
critical for the successful operation of Intelligent Transportation Systems
(ITS) on freeways. However, incomplete traffic information tends to be directly
collected from traffic detectors that are insufficiently installed in most
areas, which is a major obstacle to the popularization of ITS. To tackle this
issue, this paper introduces an innovative traffic state estimation (TSE)
framework that hybrid regression machine learning techniques (e.g., artificial
neural network (ANN), random forest (RF), and support vector machine (SVM))
with a traffic physics model (e.g., second-order macroscopic traffic flow
model) using limited information from traffic sensors as inputs to construct
accurate and full-field estimated traffic state for freeway systems. To examine
the effectiveness of the proposed TSE framework, this paper conducted empirical
studies on a real-world data set collected from a stretch of I-15 freeway in
Salt Lake City, Utah. Experimental results show that the proposed method has
been proved to estimate full-field traffic information accurately. Hence, the
proposed method could provide accurate and full-field traffic information, thus
providing the basis for the popularization of ITS.
Related papers
- A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Semantic Map Learning of Traffic Light to Lane Assignment based on
Motion Data [12.853720506838043]
Autonomous vehicles commonly rely on High Definition (HD) maps that contain information about the assignment of traffic lights to lanes.
To remedy these issues, our novel approach derives the assignments from traffic light states and the corresponding motion patterns of vehicle traffic.
Our publicly available API for the Lyft Level 5 dataset enables researchers to develop and evaluate their own approaches.
arXiv Detail & Related papers (2023-09-26T09:42:21Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - TraffNet: Learning Causality of Traffic Generation for What-if Prediction [4.604622556490027]
Real-time what-if traffic prediction is crucial for decision making in intelligent traffic management and control.
Here, we present a simple deep learning framework called TraffNet that learns the mechanisms of traffic generation for what-if pre-diction.
arXiv Detail & Related papers (2023-03-28T13:12:17Z) - Traffic State Estimation from Vehicle Trajectories with Anisotropic Gaussian Processes [21.13555047611666]
We propose a kernel rotation re-parametrization scheme that transforms a standard isotropic GP kernel into an anisotropic kernel.
We also extend our approach to a multi-output GP, which allows for simultaneously estimating the traffic state for multiple lanes.
Considering current and future mixed traffic of connected vehicles (CVs) and human-driven vehicles (HVs), we experiment with the traffic state estimation (TSE) scheme from 5% to 50% available trajectories.
arXiv Detail & Related papers (2023-03-04T03:59:17Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Multistep traffic speed prediction: A deep learning based approach using
latent space mapping considering spatio-temporal dependencies [2.3204178451683264]
ITS requires a reliable traffic prediction that can provide accurate traffic prediction at multiple time steps based on past and current traffic data.
A deep learning based approach has been developed using both the spatial and temporal dependencies.
It has been found that the proposed approach provides accurate traffic prediction results even for 60-min ahead prediction with least error.
arXiv Detail & Related papers (2021-11-03T10:17:48Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
The proposed system includes an optimization-based OD matrix generation method, a Neural Network (NN) model trained to predict OD matrices via the pattern of traffic flow and a microscopic traffic simulator.
We test the proposed system on the road network of the central terminal area (CTA) of the Los Angeles International Airport (LAX)
arXiv Detail & Related papers (2020-08-05T01:41:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.