論文の概要: Snowmass Computational Frontier: Topical Group Report on Quantum
Computing
- arxiv url: http://arxiv.org/abs/2209.06786v1
- Date: Wed, 14 Sep 2022 17:10:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-26 16:50:11.004718
- Title: Snowmass Computational Frontier: Topical Group Report on Quantum
Computing
- Title(参考訳): スノーマス計算フロンティア:量子コンピューティングに関するトピカルグループレポート
- Authors: Travis S. Humble, Gabriel N. Perdue, Martin J. Savage
- Abstract要約: 本稿では,量子情報科学(QIS)と高エネルギー物理(HEP)の相互作用について概説する。
量子コンピュータは、HEPの振れ合いを表すものではなく、我々の発見ツールキットの不可欠な部分となるように設定されている。
経済全体における量子技術の役割は、今後10年間で急速に成長すると予想されている。
- 参考スコア(独自算出の注目度): 0.8594140167290096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing will play a pivotal role in the High Energy Physics (HEP)
science program over the early parts of the 21$^{st}$ Century, both as a major
expansion of our capabilities across the Computational Frontier, and in
synthesis with quantum sensing and quantum networks. This report outlines how
Quantum Information Science (QIS) and HEP are deeply intertwined endeavors that
benefit enormously from a strong engagement together. Quantum computers do not
represent a detour for HEP, rather they are set to become an integral part of
our discovery toolkit. Problems ranging from simulating quantum field theories,
to fully leveraging the most sensitive sensor suites for new particle searches,
and even data analysis will run into limiting bottlenecks if constrained to our
current computing paradigms. Easy access to quantum computers is needed to
build a deeper understanding of these opportunities. In turn, HEP brings
crucial expertise to the national quantum ecosystem in quantum domain
knowledge, superconducting technology, cryogenic and fast microelectronics, and
massive-scale project management. The role of quantum technologies across the
entire economy is expected to grow rapidly over the next decade, so it is
important to establish the role of HEP in the efforts surrounding QIS. Fully
delivering on the promise of quantum technologies in the HEP science program
requires robust support. It is important to both invest in the co-design
opportunities afforded by the broader quantum computing ecosystem and leverage
HEP strengths with the goal of designing quantum computers tailored to HEP
science.
- Abstract(参考訳): 量子コンピューティングは、21$^{st}$ Centuryの初期段階における高エネルギー物理学(HEP)科学プログラムにおいて重要な役割を果たす。
本報告では,量子情報科学(qis)とhepが,強い関与から多大な利益を得るための深く絡み合った取り組みであることを示す。
量子コンピュータは、HEPの振れ合いを表すものではなく、我々の発見ツールキットの不可欠な部分となるように設定されている。
量子場理論のシミュレーションから、新しい粒子探索に最も敏感なセンサースイートを完全に活用すること、そしてデータ分析さえも、現在の計算パラダイムに制約された場合のボトルネックを制限することに繋がる。
量子コンピュータへの簡単なアクセスは、これらの機会をより深く理解するために必要である。
量子ドメイン知識、超伝導技術、極低温・高速マイクロエレクトロニクス、大規模プロジェクト管理において、hepは国立量子エコシステムに重要な専門知識をもたらす。
経済全体における量子技術の役割は今後10年間で急速に成長することが期待されており、QISを取り巻く取り組みにおけるHEPの役割を確立することが重要である。
HEPサイエンスプログラムにおける量子技術の約束を完全に果たすには、堅牢なサポートが必要である。
量子コンピューティングのエコシステムが与える共同設計の機会に投資し、hepの強みを活用して、hep科学に合わせた量子コンピュータを設計することが重要である。
関連論文リスト
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM量子コンピュータはQPUと他のフルスタック量子コンピュータの両方をカバーする。
焦点は、Garnet QPUとそのアーキテクチャを特徴とする20量子ビットの量子コンピュータであり、最大150量子ビットまでスケールする。
QPUとシステムレベルベンチマークは、中央値の2キュービットゲート忠実度99.5%、グリーンバーガー・ホーネ・ザイリンガー(GHZ)状態の20キュービット全てを真のエンハングリングする。
論文 参考訳(メタデータ) (2024-08-22T14:26:10Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
本稿では,量子コンピュータハードウェアの最先端開発と量子暗号,量子ソフトウェア,高スケール性量子コンピュータの今後の進歩について論じる。
量子技術の研究と開発における多くの潜在的な課題とエキサイティングな新しいトレンドが、より広範な議論のためにこの論文で強調されている。
論文 参考訳(メタデータ) (2024-03-04T17:33:18Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Quantum computing hardware for HEP algorithms and sensing [36.67390040418004]
量子情報科学は、量子力学の原理を利用して、現在のコンピュータプラットフォームで非常に難解な複雑な計算アルゴリズムを実現する。
FermilabのSuperconducting Quantum Materials and Systems (SQMS) Centerは、量子コンピューティングとセンシングのブレークスルーを提供する。
我々は,HEPアルゴリズムにおける2つの最も有望な超伝導量子アーキテクチャ,すなわち,平面デバイスに結合したトランスモンデバイスと超伝導3Dキャビティによって支持されるマルチレベルシステム(任意のNエネルギーレベルを持つ量子)について論じる。
論文 参考訳(メタデータ) (2022-04-19T01:37:36Z) - Evolution of Quantum Computing: A Systematic Survey on the Use of
Quantum Computing Tools [5.557009030881896]
我々は体系的な調査を行い、量子コンピューティングを促進する論文、ツール、フレームワーク、プラットフォームを分類する。
我々は、現在の本質を議論し、オープン課題を特定し、今後の研究方向性を提供する。
我々は、ここ数年でフレームワーク、ツール、プラットフォームのスコアが出現しており、現在利用可能な施設の改善は量子研究コミュニティにおける研究活動を活用するだろうと結論付けている。
論文 参考訳(メタデータ) (2022-04-04T21:21:12Z) - Summary: Chicago Quantum Exchange (CQE) Pulse-level Quantum Control
Workshop [4.279232730307778]
量子情報処理は、現在のコンピューティングのフロンティアを超えて、大きな可能性を秘めている。
より良い量子ビットの製造、アルゴリズムの進歩、そして量子ソフトウェアの開発に重点を置いてはならない。
デバイスをフォールトトレラントな体制にスケールするには、デバイスレベルの量子制御を洗練する必要がある。
論文 参考訳(メタデータ) (2022-02-28T08:18:59Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - A practical guide for building superconducting quantum devices [2.7080431315882967]
近年cQEDコミュニティによって開発された,最も重要なビルディングブロックをいくつか紹介する。
我々は、ほとんどのcQED実験の基盤となるコア技術の概要を提供し、初心者実験者が最初の量子デバイスを設計、構築、特徴付けるための実践的なガイドを提供することを目指している。
論文 参考訳(メタデータ) (2021-06-11T05:28:01Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。