論文の概要: Deep learning for reconstructing protein structures from cryo-EM density
maps: recent advances and future directions
- arxiv url: http://arxiv.org/abs/2209.08171v1
- Date: Fri, 16 Sep 2022 21:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 17:00:25.682028
- Title: Deep learning for reconstructing protein structures from cryo-EM density
maps: recent advances and future directions
- Title(参考訳): cryo-em密度マップによるタンパク質構造再構築のための深層学習:最近の進歩と今後の展開
- Authors: Nabin Giri, Raj S. Roy and Jianlin Cheng
- Abstract要約: Cryo-EMデータ解析の主な課題は、Cryo-EM密度マップから正確なタンパク質構造を自動的に再構築することである。
本稿では,Cryo-EM密度マップからタンパク質構造を構築するための様々なディープラーニング手法の概要を概説し,その影響を分析し,ディープラーニングモデルをトレーニングするための高品質データセットを作成する上での課題について議論する。
将来的には、Cryo-EMデータをタンパク質配列やAlphaFold予測構造などの補完的なデータソースと効果的に統合する、より高度なディープラーニングモデルを開発する必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cryo-Electron Microscopy (cryo-EM) has emerged as a key technology to
determine the structure of proteins, particularly large protein complexes and
assemblies in recent years. A key challenge in cryo-EM data analysis is to
automatically reconstruct accurate protein structures from cryo-EM density
maps. In this review, we briefly overview various deep learning methods for
building protein structures from cryo-EM density maps, analyze their impact,
and discuss the challenges of preparing high-quality data sets for training
deep learning models. Looking into the future, more advanced deep learning
models of effectively integrating cryo-EM data with other sources of
complementary data such as protein sequences and AlphaFold-predicted structures
need to be developed to further advance the field.
- Abstract(参考訳): 近年、Cryo-Electron Microscopy (cryo-EM) がタンパク質の構造、特に大きなタンパク質複合体や集合体を決定する重要な技術として出現している。
Cryo-EMデータ解析における重要な課題は、Cryo-EM密度マップから正確なタンパク質構造を自動的に再構築することである。
本稿では、cryo-em密度マップからタンパク質構造を構築するための様々な深層学習手法を概説し、その影響を分析し、深層学習モデルのトレーニングのための高品質データセットの作成の課題について論じる。
将来を見据えて、cryo-emデータをタンパク質配列やアルファフォールド予測構造などの補完的データソースと効果的に統合する、より高度なディープラーニングモデルの開発が必要である。
関連論文リスト
- SFM-Protein: Integrative Co-evolutionary Pre-training for Advanced Protein Sequence Representation [97.99658944212675]
タンパク質基盤モデルのための新しい事前学習戦略を導入する。
アミノ酸残基間の相互作用を強調し、短距離および長距離の共進化的特徴の抽出を強化する。
大規模タンパク質配列データセットを用いて学習し,より優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-10-31T15:22:03Z) - CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
タンパク質構造評価用結晶対予測学習モデル(CPE-Pro)を開発した。
CPE-Proはタンパク質の構造情報を学習し、構造間の差異を捉え、4つのデータクラスの正確なトレーサビリティを実現する。
我々は Foldseek を用いてタンパク質構造を「構造配列」にエンコードし、タンパク質構造配列言語モデル SSLM を訓練した。
論文 参考訳(メタデータ) (2024-10-21T02:21:56Z) - CryoFM: A Flow-based Foundation Model for Cryo-EM Densities [50.291974465864364]
生成モデルとして設計された基礎モデルであるCryoFMについて,高品質密度マップの分布を学習する。
フローマッチングに基づいて構築されたCryoFMは、生物分子密度マップの以前の分布を正確に捉えるために訓練されている。
論文 参考訳(メタデータ) (2024-10-11T08:53:58Z) - Endowing Protein Language Models with Structural Knowledge [5.587293092389789]
本稿では,タンパク質構造データを統合することにより,タンパク質言語モデルを強化する新しいフレームワークを提案する。
PST(Protein Structure Transformer)と呼ばれる精製モデルは、小さなタンパク質構造データベース上でさらに事前訓練されている。
PSTは、タンパク質配列の最先端基盤モデルであるESM-2を一貫して上回り、タンパク質機能予測の新しいベンチマークを設定している。
論文 参考訳(メタデータ) (2024-01-26T12:47:54Z) - Adapting Segment Anything Model (SAM) through Prompt-based Learning for
Enhanced Protein Identification in Cryo-EM Micrographs [16.923131723754192]
低温電子顕微鏡(cryo-EM)は構造生物学において重要な存在である。
TopazやcrYOLOといった最近のAIツールは、Cryo-EMイメージの課題を完全に解決していない。
本研究では,最先端画像分割基盤モデルセグメンション・アプライシング・モデルに適応するための即時学習について検討した。
論文 参考訳(メタデータ) (2023-11-04T14:20:08Z) - CrysFormer: Protein Structure Prediction via 3d Patterson Maps and
Partial Structure Attention [7.716601082662128]
タンパク質の3次元構造は、しばしば非自明な計算コストをもたらす。
本稿では,タンパク質結晶学と部分構造情報を直接利用するトランスフォーマーモデルを提案する。
提案手法はtextttCrysFormer と呼ばれ,より小さなデータセットサイズと計算コストの削減に基づいて精度の高い予測を行うことができる。
論文 参考訳(メタデータ) (2023-10-05T21:10:22Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - PSP: Million-level Protein Sequence Dataset for Protein Structure
Prediction [34.11168458572554]
PSPと命名された,高いカバレッジと多様性を持つ最初の100万レベルのタンパク質構造予測データセットを提示する。
このデータセットは570k真構造配列(10TB)と745k相補的蒸留配列(15TB)からなる。
また、このデータセット上でのSOTAタンパク質構造予測モデルのベンチマークトレーニング手順も提供する。
論文 参考訳(メタデータ) (2022-06-24T14:08:44Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
タンパク質のクラスとアーキテクチャの正確な(geq$80%)予測を、低い(leq$3A)解像度で決定された構造から行うことができることを示す。
本稿では, 高速で低コストなタンパク質構造を低解像度で分類するための概念実証と, 機能予測への拡張の基礎を提供する。
論文 参考訳(メタデータ) (2020-08-11T15:01:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。