Cell Attention Networks
- URL: http://arxiv.org/abs/2209.08179v1
- Date: Fri, 16 Sep 2022 21:57:39 GMT
- Title: Cell Attention Networks
- Authors: Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo,
Stefania Sardellitti, Sergio Barbarossa
- Abstract summary: We introduce Cell Attention Networks (CANs), a neural architecture operating on data defined over the vertices of a graph.
CANs exploit the lower and upper neighborhoods, as encoded in the cell complex, to design two independent masked self-attention mechanisms.
The experimental results show that CAN is a low complexity strategy that compares favorably with state of the art results on graph-based learning tasks.
- Score: 25.72671436731666
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Since their introduction, graph attention networks achieved outstanding
results in graph representation learning tasks. However, these networks
consider only pairwise relationships among nodes and then they are not able to
fully exploit higher-order interactions present in many real world data-sets.
In this paper, we introduce Cell Attention Networks (CANs), a neural
architecture operating on data defined over the vertices of a graph,
representing the graph as the 1-skeleton of a cell complex introduced to
capture higher order interactions. In particular, we exploit the lower and
upper neighborhoods, as encoded in the cell complex, to design two independent
masked self-attention mechanisms, thus generalizing the conventional graph
attention strategy. The approach used in CANs is hierarchical and it
incorporates the following steps: i) a lifting algorithm that learns {\it edge
features} from {\it node features}; ii) a cell attention mechanism to find the
optimal combination of edge features over both lower and upper neighbors; iii)
a hierarchical {\it edge pooling} mechanism to extract a compact meaningful set
of features. The experimental results show that CAN is a low complexity
strategy that compares favorably with state of the art results on graph-based
learning tasks.
Related papers
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
We introduce the semantic-structural attention-enhanced graph convolutional network (SSA-GCN)
It not only models the graph structure but also extracts generalized unsupervised features to enhance classification performance.
Our experiments on the Cora and CiteSeer datasets demonstrate the performance improvements achieved by our proposed method.
arXiv Detail & Related papers (2024-03-24T06:28:54Z) - Enhancing Node Representations for Real-World Complex Networks with Topological Augmentation [35.42514739566419]
TopoAug is a novel graph augmentation method that builds a complex from the original graph by constructing virtual hyperedges directly from raw data.
We provide 23 novel real-world graph datasets across various domains including social media, biology, and e-commerce.
Our empirical study shows that TopoAug consistently and significantly outperforms GNN baselines and other graph augmentation methods.
arXiv Detail & Related papers (2024-02-20T14:18:43Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Generalized Simplicial Attention Neural Networks [22.171364354867723]
We introduce Generalized Simplicial Attention Neural Networks (GSANs)
GSANs process data living on simplicial complexes using masked self-attentional layers.
These schemes learn how to combine data associated with neighbor simplices of consecutive order in a task-oriented fashion.
arXiv Detail & Related papers (2023-09-05T11:29:25Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
We propose a novel unsupervised graph representation model by contrasting cluster assignments, called as GRCCA.
It is motivated to make good use of local and global information synthetically through combining clustering algorithms and contrastive learning.
GRCCA has strong competitiveness in most tasks.
arXiv Detail & Related papers (2021-12-15T07:28:58Z) - Self-supervised Consensus Representation Learning for Attributed Graph [15.729417511103602]
We introduce self-supervised learning mechanism to graph representation learning.
We propose a novel Self-supervised Consensus Representation Learning framework.
Our proposed SCRL method treats graph from two perspectives: topology graph and feature graph.
arXiv Detail & Related papers (2021-08-10T07:53:09Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.