Deep Plug-and-Play Prior for Hyperspectral Image Restoration
- URL: http://arxiv.org/abs/2209.08240v1
- Date: Sat, 17 Sep 2022 04:41:43 GMT
- Title: Deep Plug-and-Play Prior for Hyperspectral Image Restoration
- Authors: Zeqiang Lai, Kaixuan Wei, Ying Fu
- Abstract summary: We develop a new deep HSI denoiser leveraging recurrent convolution units, short- and long-term connections, and an augmented noise level map.
The proposed denoiser is inserted into the plug-and-play framework as a powerful implicit HSI HSI prior to tackle various HSI restoration tasks.
Our approach often achieves superior performance, which is competitive with or even better than the state-of-the-art on each task.
- Score: 13.208886503547475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep-learning-based hyperspectral image (HSI) restoration methods have gained
great popularity for their remarkable performance but often demand expensive
network retraining whenever the specifics of task changes. In this paper, we
propose to restore HSIs in a unified approach with an effective plug-and-play
method, which can jointly retain the flexibility of optimization-based methods
and utilize the powerful representation capability of deep neural networks.
Specifically, we first develop a new deep HSI denoiser leveraging gated
recurrent convolution units, short- and long-term skip connections, and an
augmented noise level map to better exploit the abundant spatio-spectral
information within HSIs. It, therefore, leads to the state-of-the-art
performance on HSI denoising under both Gaussian and complex noise settings.
Then, the proposed denoiser is inserted into the plug-and-play framework as a
powerful implicit HSI prior to tackle various HSI restoration tasks. Through
extensive experiments on HSI super-resolution, compressed sensing, and
inpainting, we demonstrate that our approach often achieves superior
performance, which is competitive with or even better than the state-of-the-art
on each task, via a single model without any task-specific training.
Related papers
- Rethinking the Upsampling Layer in Hyperspectral Image Super Resolution [51.98465973507002]
We propose a novel lightweight SHSR network, i.e., LKCA-Net, that incorporates channel attention to calibrate multi-scale channel features of hyperspectral images.
We demonstrate, for the first time, that the low-rank property of the learnable upsampling layer is a key bottleneck in lightweight SHSR methods.
arXiv Detail & Related papers (2025-01-30T15:43:34Z) - HyFusion: Enhanced Reception Field Transformer for Hyperspectral Image Fusion [8.701181531082781]
Hyperspectral image (HSI) fusion addresses the challenge of reconstructing High-Resolution HSIs (HR-HSIs) from High-Resolution Multispectral images (HR-MSIs) and Low-Resolution HSIs (LR-HSIs)
arXiv Detail & Related papers (2025-01-08T18:22:44Z) - Hipandas: Hyperspectral Image Joint Denoising and Super-Resolution by Image Fusion with the Panchromatic Image [51.333064033152304]
Recently launched satellites can concurrently acquire HSIs and panchromatic (PAN) images.
Hipandas is a novel learning paradigm that reconstructs HRHS images from noisy low-resolution HSIs and high-resolution PAN images.
arXiv Detail & Related papers (2024-12-05T14:39:29Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - HIR-Diff: Unsupervised Hyperspectral Image Restoration Via Improved
Diffusion Models [38.74983301496911]
Hyperspectral image (HSI) restoration aims at recovering clean images from degraded observations.
Existing model-based methods have limitations in accurately modeling the complex image characteristics.
This paper proposes an unsupervised HSI restoration framework with pre-trained diffusion model (HIR-Diff)
arXiv Detail & Related papers (2024-02-24T17:15:05Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Improved Quasi-Recurrent Neural Network for Hyperspectral Image
Denoising [9.723155514555765]
We show that with a few simple modifications, the performance of QRNN3D could be substantially improved further.
We introduce an adaptive fusion module to replace its vanilla additive skip connection to better fuse the features of the encoder and decoder.
Experimental results on various noise settings demonstrate the effectiveness and superior performance of our method.
arXiv Detail & Related papers (2022-11-27T12:38:03Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
We propose a unified paradigm combining the spatial and spectral properties for hyperspectral image restoration.
The proposed paradigm enjoys performance superiority from the non-local spatial denoising and light computation complexity.
Experiments on HSI denoising, compressed reconstruction, and inpainting tasks, with both simulated and real datasets, demonstrate its superiority.
arXiv Detail & Related papers (2020-10-24T15:53:56Z) - Improving Deep Hyperspectral Image Classification Performance with
Spectral Unmixing [3.84448093764973]
We propose an abundance-based multi-HSI classification method.
We convert every HSI from the spectral domain to the abundance domain by a dataset-specific autoencoder.
Secondly, the abundance representations from multiple HSIs are collected to form an enlarged dataset.
arXiv Detail & Related papers (2020-04-01T17:14:05Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.