論文の概要: A real-time dynamic obstacle tracking and mapping system for UAV
navigation and collision avoidance with an RGB-D camera
- arxiv url: http://arxiv.org/abs/2209.08258v3
- Date: Wed, 23 Aug 2023 13:50:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 19:08:16.832270
- Title: A real-time dynamic obstacle tracking and mapping system for UAV
navigation and collision avoidance with an RGB-D camera
- Title(参考訳): RGB-DカメラによるUAVナビゲーションと衝突回避のためのリアルタイム動的障害物追跡・マッピングシステム
- Authors: Zhefan Xu, Xiaoyang Zhan, Baihan Chen, Yumeng Xiu, Chenhao Yang, and
Kenji Shimada
- Abstract要約: RGB-Dカメラを用いたクワッドコプター障害物回避のためのリアルタイム動的障害物追跡とマッピングシステムを提案する。
提案システムではまず, 占有ボクセルマップを用いた深度画像を用いて動的障害物領域を生成する。
追従動的障害物の状態を用いたマルコフ連鎖に基づく環境対応軌道予測法を提案する。
- 参考スコア(独自算出の注目度): 7.77809394151497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The real-time dynamic environment perception has become vital for autonomous
robots in crowded spaces. Although the popular voxel-based mapping methods can
efficiently represent 3D obstacles with arbitrarily complex shapes, they can
hardly distinguish between static and dynamic obstacles, leading to the limited
performance of obstacle avoidance. While plenty of sophisticated learning-based
dynamic obstacle detection algorithms exist in autonomous driving, the
quadcopter's limited computation resources cannot achieve real-time performance
using those approaches. To address these issues, we propose a real-time dynamic
obstacle tracking and mapping system for quadcopter obstacle avoidance using an
RGB-D camera. The proposed system first utilizes a depth image with an
occupancy voxel map to generate potential dynamic obstacle regions as
proposals. With the obstacle region proposals, the Kalman filter and our
continuity filter are applied to track each dynamic obstacle. Finally, the
environment-aware trajectory prediction method is proposed based on the Markov
chain using the states of tracked dynamic obstacles. We implemented the
proposed system with our custom quadcopter and navigation planner. The
simulation and physical experiments show that our methods can successfully
track and represent obstacles in dynamic environments in real-time and safely
avoid obstacles.
- Abstract(参考訳): 混雑した空間における自律ロボットにとって、リアルタイムな動的環境認識は不可欠である。
一般的なボクセルマッピング法は, 任意に複雑な形状の3次元障害物を効率的に表現できるが, 静的障害物と動的障害物の区別は困難であり, 障害物回避性能が制限される。
自動運転には、高度な学習に基づく動的障害物検出アルゴリズムが数多く存在するが、クワッドコプターの限られた計算リソースでは、これらのアプローチでリアルタイムのパフォーマンスを達成できない。
そこで本研究では,rgb-dカメラを用いたクワッドコプター障害物回避のためのリアルタイム動的障害物追跡マッピングシステムを提案する。
提案システムではまず, 占有ボクセルマップを用いた深度画像を用いて動的障害物領域を生成する。
障害物領域の提案では, カルマンフィルタと連続フィルタを用いて動的障害物の追跡を行う。
最後に、追跡された動的障害物の状態を用いたマルコフ連鎖に基づく環境対応軌道予測手法を提案する。
我々は独自のクワッドコプターとナビゲーションプランナーを用いて提案システムを実装した。
シミュレーションおよび物理実験により,本手法は動的環境における障害物をリアルタイムに追跡・表現し,障害物を安全に回避できることを示した。
関連論文リスト
- Enhancing Autonomous Navigation by Imaging Hidden Objects using Single-Photon LiDAR [12.183773707869069]
単一光子LiDARを用いたNon-Line-of-Sight(NLOS)センシングによる視認性の向上と自律ナビゲーションの向上を目的とした新しいアプローチを提案する。
本手法は,マルチバウンス光情報を利用することで,移動ロボットを「隅々まで見る」ことを可能にする。
論文 参考訳(メタデータ) (2024-10-04T16:03:13Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
本稿では,動的障害物の追跡と軌道予測を組み合わせて,効率的な自律飛行を実現するビジョンベース計画システムを提案する。
シミュレーション環境と実環境環境の両方で実験を行い,本研究の結果から動的環境の障害物をリアルタイムに検出・回避することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-11-21T08:09:00Z) - Unified Control Framework for Real-Time Interception and Obstacle Avoidance of Fast-Moving Objects with Diffusion Variational Autoencoder [2.5642257132861923]
動的環境におけるロボットアームによる高速移動物体のリアルタイムインターセプションは、非常に困難な課題である。
本稿では,動的オブジェクトを同時にインターセプトし,移動障害を回避することで,課題に対処する統一的な制御フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-27T18:46:52Z) - Vision-aided UAV navigation and dynamic obstacle avoidance using
gradient-based B-spline trajectory optimization [7.874708385247353]
本稿では,ロボットの車載視力を利用した勾配に基づくB-スプライン軌道最適化アルゴリズムを提案する。
提案手法は、まず円ベースのガイドポイントアルゴリズムを用いて、静的障害物を避けるためのコストと勾配を近似する。
視界検出された移動物体では, 動的衝突を防止するために, 反射・水平距離場が同時に使用される。
論文 参考訳(メタデータ) (2022-09-15T02:12:30Z) - Scalable and Real-time Multi-Camera Vehicle Detection,
Re-Identification, and Tracking [58.95210121654722]
理想化されたビデオストリームやキュレートされたビデオストリームの代わりに,リアルタイムで低解像度のCCTVを処理する,リアルタイムな都市規模のマルチカメラ車両追跡システムを提案する。
私たちの手法は、公共のリーダーボードで上位5人のパフォーマーにランク付けされています。
論文 参考訳(メタデータ) (2022-04-15T12:47:01Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
我々は視覚と受容の相補的な強みを利用して、脚のあるロボットでポイントゴールナビゲーションを実現する。
車輪付きロボット(LoCoBot)のベースラインよりも優れた性能を示す。
また,センサーと計算能力を備えた四足歩行ロボットに,我々のシステムを実環境に展開することも示す。
論文 参考訳(メタデータ) (2021-12-03T18:59:59Z) - DPMPC-Planner: A real-time UAV trajectory planning framework for complex
static environments with dynamic obstacles [0.9462808515258462]
安全なUAVナビゲーションは、複雑な環境構造、動的障害物、計測ノイズによる不確実性、予測不可能な移動障害物の挙動のために困難である。
本稿では,動的障害物を伴う複雑な静的環境を考慮した安全なナビゲーションを実現するための軌道計画フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-14T23:51:02Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
本稿では,ロボットの密集した動的環境における衝突のない軌道を計算するためのセンサベース学習ナビゲーションアルゴリズムを提案する。
我々のアプローチは、sim2realパラダイムを用いて訓練された深層強化学習に基づくエキスパートポリシーを使用する。
シミュレーション環境でのアルゴリズムの利点を強調し、移動中の歩行者の間でClearpath Jackalロボットをナビゲートする。
論文 参考訳(メタデータ) (2021-04-22T01:33:10Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
障害物回避は、移動ロボットの自律ナビゲーションのための根本的かつ困難な問題です。
本稿では,ロボットが単一眼カメラにのみ依存しなければならない単純な3D環境における障害物回避の問題を検討する。
データ駆動型エンドツーエンドディープラーニングアプローチとして,障害回避問題に取り組む。
論文 参考訳(メタデータ) (2021-03-08T13:05:46Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。