Application of Neural Network in the Prediction of NOx Emissions from
Degrading Gas Turbine
- URL: http://arxiv.org/abs/2209.09168v1
- Date: Mon, 19 Sep 2022 16:44:44 GMT
- Title: Application of Neural Network in the Prediction of NOx Emissions from
Degrading Gas Turbine
- Authors: Zhenkun Zheng and Alan Rezazadeh
- Abstract summary: Nine different process variables, or predictors, are considered in the predictive modelling.
The model trained by neural network algorithm manifests the optimal settings of the process variables to reach the minimum value of NOx emissions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper is aiming to apply neural network algorithm for predicting the
process response (NOx emissions) from degrading natural gas turbines. Nine
different process variables, or predictors, are considered in the predictive
modelling. It is found out that the model trained by neural network algorithm
should use part of recent data in the training and validation sets accounting
for the impact of the system degradation. R-Square values of the training and
validation sets demonstrate the validity of the model. The residue plot,
without any clear pattern, shows the model is appropriate. The ranking of the
importance of the process variables are demonstrated and the prediction profile
confirms the significance of the process variables. The model trained by using
neural network algorithm manifests the optimal settings of the process
variables to reach the minimum value of NOx emissions from the degrading gas
turbine system.
Related papers
- Predicting Wall Thickness Changes in Cold Forging Processes: An Integrated FEM and Neural Network approach [2.7763199324745966]
We first provide a thorough analysis of nosing processes and the influencing parameters.
We then set-up a Finite Element Method simulation to better analyse the effects of varying process parameters.
We present a novel modeling framework based on specifically designed graph neural networks as surrogate models.
arXiv Detail & Related papers (2024-11-20T14:42:53Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
We propose a new post-processing calibration method called Neural Clamping.
Our empirical results show that Neural Clamping significantly outperforms state-of-the-art post-processing calibration methods.
arXiv Detail & Related papers (2022-09-23T14:18:39Z) - On the adaptation of recurrent neural networks for system identification [2.5234156040689237]
This paper presents a transfer learning approach which enables fast and efficient adaptation of Recurrent Neural Network (RNN) models of dynamical systems.
The system dynamics are then assumed to change, leading to an unacceptable degradation of the nominal model performance on the perturbed system.
To cope with the mismatch, the model is augmented with an additive correction term trained on fresh data from the new dynamic regime.
arXiv Detail & Related papers (2022-01-21T12:04:17Z) - Combining data assimilation and machine learning to estimate parameters
of a convective-scale model [0.0]
Errors in the representation of clouds in convection-permitting numerical weather prediction models can be introduced by different sources.
In this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural networks.
arXiv Detail & Related papers (2021-09-07T09:17:29Z) - Masking Neural Networks Using Reachability Graphs to Predict Process
Events [0.0]
Decay Replay Mining is a deep learning method that utilizes process model notations to predict the next event.
This paper proposes an approach to further interlock the process model of Replay Mining with its neural network for next event prediction.
arXiv Detail & Related papers (2021-08-01T09:06:55Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Transfer Learning with Convolutional Networks for Atmospheric Parameter
Retrieval [14.131127382785973]
The Infrared Atmospheric Sounding Interferometer (IASI) on board the MetOp satellite series provides important measurements for Numerical Weather Prediction (NWP)
Retrieving accurate atmospheric parameters from the raw data provided by IASI is a large challenge, but necessary in order to use the data in NWP models.
We show how features extracted from the IASI data by a CNN trained to predict a physical variable can be used as inputs to another statistical method designed to predict a different physical variable at low altitude.
arXiv Detail & Related papers (2020-12-09T09:28:42Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.