A general quantum circuit framework for Extended Wigner's Friend Scenarios: logically and causally consistent reasoning without absolute measurement events
- URL: http://arxiv.org/abs/2209.09281v2
- Date: Mon, 11 Nov 2024 07:16:55 GMT
- Title: A general quantum circuit framework for Extended Wigner's Friend Scenarios: logically and causally consistent reasoning without absolute measurement events
- Authors: V. Vilasini, Mischa P. Woods,
- Abstract summary: Wigner's Friend Scenarios go beyond the standard usage of quantum theory.
We develop a general quantum circuit framework for EWFSs.
We show that an objective notion of measurement events emerges in real-world experiments.
- Score: 0.0
- License:
- Abstract: Extended Wigner's Friend Scenarios (EWFSs) go beyond the standard usage of quantum theory, where agents are treated classically, and instead model agents as unitary evolving quantum systems. This has been the subject of several no-go results: Frauchiger and Renner (FR) suggested that quantum agents reasoning using quantum theory will arrive at logical paradoxes, while other results highlight challenges for having an objective notion of measurement events and for causal reasoning in EWFSs. This raises the question: Is it possible to reliably make and test scientific predictions, and consistently reason about the world when applying quantum theory universally without assuming that observed measurement outcomes are absolute? We give a positive answer by developing a general quantum circuit framework for EWFSs. We formalise the concept of Heisenberg cuts by mapping them to distinct channels in a quantum circuit, and prove that FR-type paradoxes can be fully resolved by making explicit the conditioning on the quantum channels that are used in the reasoning process. We provide concrete rules by which quantum agents can reason and make predictions in a logically and causally consistent manner. Our framework describes all perspectives and predictions of an EWFS within a single, well-defined causal structure, although it allows events to be fundamentally subjective. Moreover, we show that an objective notion of measurement events nevertheless emerges in real-world experiments. This demonstrates the possibility of a relational yet operational framework overcoming challenges to scientific reasoning in EWFSs without modifying the Born rule, quantum unitarity, or the axioms of classical logic and probability theory. This enables analysis of different EWFS arguments and provides a platform to consistently extend quantum information methods and studies to Wigner's Friend Scenarios.
Related papers
- The composition rule for quantum systems is not the only possible one [0.0]
We argue that the composition postulate deserves to be experimentally scrutinised independently of the other features of quantum theory.
We formulate a family of operational theories that are solely distinguished from quantum theory by their system-composition rule.
arXiv Detail & Related papers (2024-11-24T19:31:13Z) - Observability and Predictability in Quantum and Post-Quantum Physics [0.0]
I show that many quantum 'paradoxes' rest on ambiguous reasoning about the two domains.
I formally define and address the question of whether quantum uncertainty could be fundamental.
I argue that a partial proof for the impossibility of predictive advantage can be established for bi-partite quantum systems.
arXiv Detail & Related papers (2024-08-11T17:05:01Z) - A simple formulation of no-cloning and no-hiding that admits efficient
and robust verification [0.0]
Incompatibility is a feature of quantum theory that sets it apart from classical theory.
The no-hiding theorem is another such instance that arises in the context of the black-hole information paradox.
We formulate both of these fundamental features of quantum theory in a single form that is amenable to efficient verification.
arXiv Detail & Related papers (2023-03-05T12:48:11Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Probing the limits of quantum theory with quantum information at
subnuclear scales [0.13844779265721088]
We propose a new theoretical framework of Q-data tests.
It recognises the established validity of quantum theory, but allows for more general -- 'post-quantum' -- scenarios in certain physical regimes.
arXiv Detail & Related papers (2021-03-22T16:47:39Z) - Quantum Entropic Causal Inference [30.939150842529052]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
arXiv Detail & Related papers (2021-02-23T15:51:34Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.