論文の概要: Unifying Model-Based and Neural Network Feedforward: Physics-Guided
Neural Networks with Linear Autoregressive Dynamics
- arxiv url: http://arxiv.org/abs/2209.12489v1
- Date: Mon, 26 Sep 2022 08:01:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 18:39:55.399080
- Title: Unifying Model-Based and Neural Network Feedforward: Physics-Guided
Neural Networks with Linear Autoregressive Dynamics
- Title(参考訳): モデルベースとニューラルネットワークフィードフォワードの統一:線形自己回帰ダイナミクスを用いた物理誘導ニューラルネットワーク
- Authors: Johan Kon, Dennis Bruijnen, Jeroen van de Wijdeven, Marcel Heertjes,
Tom Oomen
- Abstract要約: 本稿では,未知の非線形力学を補償するフィードフォワード制御フレームワークを開発する。
フィードフォワードコントローラは、物理モデルとニューラルネットワークの並列結合としてパラメータ化される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unknown nonlinear dynamics often limit the tracking performance of
feedforward control. The aim of this paper is to develop a feedforward control
framework that can compensate these unknown nonlinear dynamics using universal
function approximators. The feedforward controller is parametrized as a
parallel combination of a physics-based model and a neural network, where both
share the same linear autoregressive (AR) dynamics. This parametrization allows
for efficient output-error optimization through Sanathanan-Koerner (SK)
iterations. Within each SK-iteration, the output of the neural network is
penalized in the subspace of the physics-based model through orthogonal
projection-based regularization, such that the neural network captures only the
unmodelled dynamics, resulting in interpretable models.
- Abstract(参考訳): 未知非線形ダイナミクスはしばしばフィードフォワード制御のトラッキング性能を制限する。
本研究の目的は、普遍関数近似器を用いて未知の非線形ダイナミクスを補償できるフィードフォワード制御フレームワークを開発することである。
feedforwardコントローラは、物理ベースのモデルとニューラルネットワークの並列結合としてパラメータ化され、どちらも同じ線形自己回帰(ar)ダイナミクスを共有する。
このパラメータ化により、sanathanan-koerner(sk)反復による効率的な出力エラー最適化が可能になる。
各SKイテレーション内では、ニューラルネットワークの出力は直交射影に基づく正規化を通じて物理モデルの部分空間でペナル化され、ニューラルネットワークは非モデル化されたダイナミクスのみをキャプチャし、解釈可能なモデルをもたらす。
関連論文リスト
- Data-driven Nonlinear Parametric Model Order Reduction Framework using
Deep Hierarchical Variational Autoencoder [5.521324490427243]
深層ニューラルネットワークを用いたデータ駆動パラメトリックモデルオーダー削減(MOR)手法を提案する。
LSH-VAEは、非線形力学系のパラメトリックに対して、かなりの数の自由度で非線形MORを実行することができる。
論文 参考訳(メタデータ) (2023-07-10T02:44:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Physics guided neural networks for modelling of non-linear dynamics [0.0]
この研究は、ディープニューラルネットワークの中間層に部分的に既知の情報を注入することで、モデルの精度を向上し、モデルの不確実性を低減し、トレーニング中に収束性を向上させることを実証する。
これらの物理誘導ニューラルネットワークの価値は、非線形系理論においてよく知られた5つの方程式で表される様々な非線形力学系の力学を学習することによって証明されている。
論文 参考訳(メタデータ) (2022-05-13T19:06:36Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - On feedforward control using physics-guided neural networks: Training
cost regularization and optimized initialization [0.0]
モデルベースのフィードフォワードコントローラの性能は、典型的には逆システム力学モデルの精度によって制限される。
本稿では,特定物理パラメータを用いた正規化手法を提案する。
実生活の産業用リニアモーターで検証され、追跡精度と外挿の精度が向上する。
論文 参考訳(メタデータ) (2022-01-28T12:51:25Z) - Constrained Block Nonlinear Neural Dynamical Models [1.3163098563588727]
既知の優先度によって調整されたニューラルネットワークモジュールは、非線形ダイナミクスを持つシステムを表現するために効果的に訓練および結合することができる。
提案手法は,入力,状態,出力のダイナミクスを表現するニューラルネットワークブロックで構成され,ネットワーク重みとシステム変数に制約を課す。
3つの非線形システムのシステム識別タスクにおける提案アーキテクチャと学習手法の性能評価を行った。
論文 参考訳(メタデータ) (2021-01-06T04:27:54Z) - Neural Dynamic Mode Decomposition for End-to-End Modeling of Nonlinear
Dynamics [49.41640137945938]
ニューラルネットワークに基づくリフト関数を推定するためのニューラルダイナミックモード分解法を提案する。
提案手法により,予測誤差はニューラルネットワークとスペクトル分解によって逆伝搬される。
提案手法の有効性を,固有値推定と予測性能の観点から実証した。
論文 参考訳(メタデータ) (2020-12-11T08:34:26Z) - DynNet: Physics-based neural architecture design for linear and
nonlinear structural response modeling and prediction [2.572404739180802]
本研究では,線形および非線形な多自由度系の力学を学習できる物理に基づくリカレントニューラルネットワークモデルを提案する。
このモデルは、変位、速度、加速度、内部力を含む完全な応答のセットを推定することができる。
論文 参考訳(メタデータ) (2020-07-03T17:05:35Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。