Device-friendly Guava fruit and leaf disease detection using deep
learning
- URL: http://arxiv.org/abs/2209.12557v1
- Date: Mon, 26 Sep 2022 10:19:57 GMT
- Title: Device-friendly Guava fruit and leaf disease detection using deep
learning
- Authors: Rabindra Nath Nandi, Aminul Haque Palash, Nazmul Siddique and Mohammed
Golam Zilani
- Abstract summary: This work presents a deep learning-based plant disease diagnostic system using images of fruits and leaves.
Five state-of-the-art convolutional neural networks (CNN) have been employed for implementing the system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a deep learning-based plant disease diagnostic system
using images of fruits and leaves. Five state-of-the-art convolutional neural
networks (CNN) have been employed for implementing the system. Hitherto model
accuracy has been the focus for such applications and model optimization has
not been accounted for the model to be applicable to end-user devices. Two
model quantization techniques such as float16 and dynamic range quantization
have been applied to the five state-of-the-art CNN architectures. The study
shows that the quantized GoogleNet model achieved the size of 0.143 MB with an
accuracy of 97%, which is the best candidate model considering the size
criterion. The EfficientNet model achieved the size of 4.2MB with an accuracy
of 99%, which is the best model considering the performance criterion. The
source codes are available at
https://github.com/CompostieAI/Guava-disease-detection.
Related papers
- Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease [0.0]
This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
arXiv Detail & Related papers (2024-08-16T20:15:24Z) - ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object [78.58860252442045]
We introduce generative model as a data source for hard images that benchmark deep models' robustness.
We are able to generate images with more diversified backgrounds, textures, and materials than any prior work, where we term this benchmark as ImageNet-D.
Our work suggests that diffusion models can be an effective source to test vision models.
arXiv Detail & Related papers (2024-03-27T17:23:39Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - NCTV: Neural Clamping Toolkit and Visualization for Neural Network
Calibration [66.22668336495175]
A lack of consideration for neural network calibration will not gain trust from humans.
We introduce the Neural Clamping Toolkit, the first open-source framework designed to help developers employ state-of-the-art model-agnostic calibrated models.
arXiv Detail & Related papers (2022-11-29T15:03:05Z) - An Efficient End-to-End Deep Neural Network for Interstitial Lung
Disease Recognition and Classification [0.5424799109837065]
This paper introduces an end-to-end deep convolution neural network (CNN) for classifying ILDs patterns.
The proposed model comprises four convolutional layers with different kernel sizes and Rectified Linear Unit (ReLU) activation function.
A dataset consisting of 21328 image patches of 128 CT scans with five classes is taken to train and assess the proposed model.
arXiv Detail & Related papers (2022-04-21T06:36:10Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
arXiv Detail & Related papers (2021-12-15T08:06:45Z) - Real-time Human Detection Model for Edge Devices [0.0]
Convolutional Neural Networks (CNNs) have replaced traditional feature extraction and machine learning models in detection and classification tasks.
Lightweight CNN models have been recently introduced for real-time tasks.
This paper suggests a CNN-based lightweight model that can fit on a limited edge device such as Raspberry Pi.
arXiv Detail & Related papers (2021-11-20T18:42:17Z) - A High-Performance Adaptive Quantization Approach for Edge CNN
Applications [0.225596179391365]
Recent convolutional neural network (CNN) development continues to advance the state-of-the-art model accuracy for various applications.
The enhanced accuracy comes at the cost of substantial memory bandwidth and storage requirements.
In this paper, we introduce an adaptive high-performance quantization method to resolve the issue of biased activation.
arXiv Detail & Related papers (2021-07-18T07:49:18Z) - Effective Model Sparsification by Scheduled Grow-and-Prune Methods [73.03533268740605]
We propose a novel scheduled grow-and-prune (GaP) methodology without pre-training the dense models.
Experiments have shown that such models can match or beat the quality of highly optimized dense models at 80% sparsity on a variety of tasks.
arXiv Detail & Related papers (2021-06-18T01:03:13Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.