論文の概要: The Curse of Unrolling: Rate of Differentiating Through Optimization
- arxiv url: http://arxiv.org/abs/2209.13271v3
- Date: Fri, 25 Aug 2023 16:24:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-28 18:11:53.350646
- Title: The Curse of Unrolling: Rate of Differentiating Through Optimization
- Title(参考訳): unrollingの呪い:最適化による差別化率
- Authors: Damien Scieur, Quentin Bertrand, Gauthier Gidel, Fabian Pedregosa
- Abstract要約: 未分化は反復解法を用いて解を近似し、計算経路を通して解を微分する。
我々は,(1)高速収束につながる大きな学習率を選択することができるが,アルゴリズムが任意に長いバーンインフェーズを持つことを受け入れるか,あるいは(2)即時収束につながるより少ない学習率を選択するかのどちらかを示す。
- 参考スコア(独自算出の注目度): 35.327233435055305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computing the Jacobian of the solution of an optimization problem is a
central problem in machine learning, with applications in hyperparameter
optimization, meta-learning, optimization as a layer, and dataset distillation,
to name a few. Unrolled differentiation is a popular heuristic that
approximates the solution using an iterative solver and differentiates it
through the computational path. This work provides a non-asymptotic
convergence-rate analysis of this approach on quadratic objectives for gradient
descent and the Chebyshev method. We show that to ensure convergence of the
Jacobian, we can either 1) choose a large learning rate leading to a fast
asymptotic convergence but accept that the algorithm may have an arbitrarily
long burn-in phase or 2) choose a smaller learning rate leading to an immediate
but slower convergence. We refer to this phenomenon as the curse of unrolling.
Finally, we discuss open problems relative to this approach, such as deriving a
practical update rule for the optimal unrolling strategy and making novel
connections with the field of Sobolev orthogonal polynomials.
- Abstract(参考訳): 最適化問題の解のヤコビアンを計算することは、ハイパーパラメータ最適化、メタラーニング、層としての最適化、データセット蒸留など、機械学習における中心的な問題である。
unrolled differentiationは、反復解法を用いて解を近似し、計算経路を微分する一般的なヒューリスティックである。
この研究は、勾配降下とチェビシェフ法に対する二次目的に対するこのアプローチの非漸近収束率解析を提供する。
我々は、ヤコビアンの収束を保証するために、どちらかが可能であることを示す。
1)高速な漸近収束につながる大きな学習率を選択するが、アルゴリズムが任意に長いバーンインフェーズを持つことを受け入れるか、
2) より少ない学習率を選択して, 瞬時に, 緩やかに収束させる。
我々はこの現象を解脱の呪いと呼ぶ。
最後に, 最適展開戦略のための実用的な更新規則の導出やソボレフ直交多項式の分野との新たな接続など, このアプローチに対するオープンな問題について議論する。
関連論文リスト
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Convergence Rates of Two-Time-Scale Gradient Descent-Ascent Dynamics for
Solving Nonconvex Min-Max Problems [2.0305676256390934]
連立勾配降下指数アルゴリズムの連続時間変動の有限時間特性を特徴付ける。
連続時間アルゴリズムの挙動に関する結果は、離散時間アルゴリズムの収束特性を高めるために用いられる。
論文 参考訳(メタデータ) (2021-12-17T15:51:04Z) - A Two-Time-Scale Stochastic Optimization Framework with Applications in Control and Reinforcement Learning [13.908826484332282]
最適化問題の解法として,新しい2段階勾配法を提案する。
最初の貢献は、提案した2時間スケール勾配アルゴリズムの有限時間複雑性を特徴づけることである。
我々は、強化学習における勾配に基づく政策評価アルゴリズムに適用する。
論文 参考訳(メタデータ) (2021-09-29T23:15:23Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
内部最適化問題が凸であるが非滑らかである場合の一階法を研究する。
本研究では, ヤコビアンの近位勾配降下と近位座標降下収率列の前方モード微分が, 正確なヤコビアンに向かって収束していることを示す。
論文 参考訳(メタデータ) (2021-05-04T17:31:28Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-04T00:26:56Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
我々は、弱凸(おそらく非滑らかな)最適化問題の重要なクラスを解くための、適応的な段階的な新しい手法の族を解析する。
実験結果から,提案アルゴリズムが0次勾配降下と設計変動を経験的に上回ることを示す。
論文 参考訳(メタデータ) (2020-05-19T07:44:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。