論文の概要: 3D Neural Sculpting (3DNS): Editing Neural Signed Distance Functions
- arxiv url: http://arxiv.org/abs/2209.13971v1
- Date: Wed, 28 Sep 2022 10:05:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 18:07:14.513143
- Title: 3D Neural Sculpting (3DNS): Editing Neural Signed Distance Functions
- Title(参考訳): 3次元ニューラルスカルプティング(DNS):ニューラルサイン付き距離関数の編集
- Authors: Petros Tzathas, Petros Maragos, Anastasios Roussos
- Abstract要約: 本研究では,ニューラルネットワークを用いて表現された符号付き距離関数の対話的編集を行う手法を提案する。
メッシュのための3D彫刻ソフトウェアにインスパイアされた私たちは、直感的で将来彫刻家やデジタルアーティストが利用できるブラシベースのフレームワークを使用しています。
- 参考スコア(独自算出の注目度): 34.39282814876276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, implicit surface representations through neural networks
that encode the signed distance have gained popularity and have achieved
state-of-the-art results in various tasks (e.g. shape representation, shape
reconstruction, and learning shape priors). However, in contrast to
conventional shape representations such as polygon meshes, the implicit
representations cannot be easily edited and existing works that attempt to
address this problem are extremely limited. In this work, we propose the first
method for efficient interactive editing of signed distance functions expressed
through neural networks, allowing free-form editing. Inspired by 3D sculpting
software for meshes, we use a brush-based framework that is intuitive and can
in the future be used by sculptors and digital artists. In order to localize
the desired surface deformations, we regulate the network by using a copy of it
to sample the previously expressed surface. We introduce a novel framework for
simulating sculpting-style surface edits, in conjunction with interactive
surface sampling and efficient adaptation of network weights. We qualitatively
and quantitatively evaluate our method in various different 3D objects and
under many different edits. The reported results clearly show that our method
yields high accuracy, in terms of achieving the desired edits, while at the
same time preserving the geometry outside the interaction areas.
- Abstract(参考訳): 近年、符号付き距離を符号化するニューラルネットワークによる暗黙の表面表現が人気を集め、様々なタスク(例えば、形状表現、形状再構成、学習形態先行)で最先端の結果を得た。
しかし、ポリゴンメッシュのような従来の形状表現とは対照的に、暗黙の表現は容易に編集できず、この問題に対処しようとする既存の研究は極めて限定的である。
本研究では,ニューラルネットワークで表現された符号付き距離関数を対話的に効率的に編集する手法を提案する。
メッシュのための3D彫刻ソフトウェアにインスパイアされた私たちは、直感的で将来彫刻家やデジタルアーティストが利用できるブラシベースのフレームワークを使用しています。
所望の表面変形を局所化するために,そのコピーを用いてネットワークを制御し,前述した表面をサンプリングする。
本稿では,インタラクティブな表面サンプリングとネットワーク重み付けの効率的な適応と合わせて,彫刻スタイルの表面編集をシミュレートする新しいフレームワークを提案する。
本手法を様々な3次元オブジェクトおよび様々な編集条件下で定性的に定量的に評価する。
その結果,提案手法は,所望の編集を行うと同時に,相互作用領域の外側の幾何を保存しながら,高い精度が得られることがわかった。
関連論文リスト
- CNS-Edit: 3D Shape Editing via Coupled Neural Shape Optimization [56.47175002368553]
本稿では、3次元形状編集を潜在空間で暗黙的に行うために,結合表現とニューラルボリューム最適化に基づく新しい手法を提案する。
まず,3次元形状編集を支援する結合型ニューラル形状表現を設計する。
第二に、結合したニューラルネットワークの形状最適化手順を定式化し、編集操作対象の2つの結合した成分を協調最適化する。
論文 参考訳(メタデータ) (2024-02-04T01:52:56Z) - SERF: Fine-Grained Interactive 3D Segmentation and Editing with Radiance Fields [92.14328581392633]
放射場を用いた対話型3Dセグメンテーションと編集アルゴリズムを新たに導入し,これをSERFと呼ぶ。
提案手法では,マルチビューアルゴリズムと事前学習した2Dモデルを統合することにより,ニューラルネットワーク表現を生成する。
この表現に基づいて,局所的な情報を保存し,変形に頑健な新しい表面レンダリング技術を導入する。
論文 参考訳(メタデータ) (2023-12-26T02:50:42Z) - Neural Impostor: Editing Neural Radiance Fields with Explicit Shape
Manipulation [49.852533321916844]
マルチグリッドの暗黙の場とともに、明示的な四面体メッシュを組み込んだハイブリッド表現であるNeural Impostorを導入する。
我々のフレームワークは、多グリッドのバリ中心座標符号化を利用して、暗黙のフィールドの明示的な形状操作と幾何的編集を橋渡しする。
合成オブジェクトと実際のキャプチャデータの両方を編集するなど、多様な例や実験を通して、システムの堅牢性と適応性を示す。
論文 参考訳(メタデータ) (2023-10-09T04:07:00Z) - 3Deformer: A Common Framework for Image-Guided Mesh Deformation [27.732389685912214]
ソース3Dメッシュにセマンティック素材とユーザが指定したセマンティックイメージが与えられた場合、3Deformerはソースメッシュを正確に編集することができる。
私たちの3Deformerは素晴らしい結果をもたらし、最先端のレベルに達することができます。
論文 参考訳(メタデータ) (2023-07-19T10:44:44Z) - Learning Locally Editable Virtual Humans [37.95173373011365]
完全編集可能なニューラルアバターをモデル化するための新しいハイブリッド表現とエンドツーエンドのトレーニング可能なネットワークアーキテクチャを提案する。
私たちの研究の中心には、ニューラルネットワークのモデリング能力と使いやすさ、スキン付きメッシュの固有の3D一貫性を組み合わせた表現があります。
提案手法は多種多様な細かなアバターを生成し,最先端の手法に比べて優れたモデル適合性を実現する。
論文 参考訳(メタデータ) (2023-04-28T23:06:17Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - Learning Neural Implicit Representations with Surface Signal
Parameterizations [14.835882967340968]
本稿では,外見データに適した表面パラメータ化を暗黙的に符号化するニューラルネットワークアーキテクチャを提案する。
私たちのモデルは、既存のメッシュベースのデジタルコンテンツと外見データとの互換性が保たれています。
論文 参考訳(メタデータ) (2022-11-01T15:10:58Z) - NeuMesh: Learning Disentangled Neural Mesh-based Implicit Field for
Geometry and Texture Editing [39.71252429542249]
本稿では,メッシュ頂点上の幾何およびテクスチャコードを用いて,ニューラル暗黙の場を符号化することで,メッシュに基づく新しい表現を提案する。
メッシュベース表現の空間的識別性を最大化する学習可能な手話指標を含む,いくつかの手法を開発した。
実データと合成データの両方における実験および編集例は,表現品質と編集能力において,本手法が優れていることを示す。
論文 参考訳(メタデータ) (2022-07-25T05:30:50Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
カメラポーズの有無にかかわらず、少数のカラー画像から3次元メッシュ表現における形状生成の問題について検討する。
我々は,グラフ畳み込みネットワークを用いたクロスビュー情報を活用することにより,形状品質をさらに向上する。
我々のモデルは初期メッシュの品質とカメラポーズの誤差に頑健であり、テスト時間最適化のための微分関数と組み合わせることができる。
論文 参考訳(メタデータ) (2022-04-21T03:42:31Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。