Data Augmentation using Feature Generation for Volumetric Medical Images
- URL: http://arxiv.org/abs/2209.14097v1
- Date: Wed, 28 Sep 2022 13:46:24 GMT
- Title: Data Augmentation using Feature Generation for Volumetric Medical Images
- Authors: Khushboo Mehra, Hassan Soliman, Soumya Ranjan Sahoo
- Abstract summary: Medical image classification is one of the most critical problems in the image recognition area.
One of the major challenges in this field is the scarcity of labelled training data.
Deep Learning models, in particular, show promising results on image segmentation and classification problems.
- Score: 0.08594140167290097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image classification is one of the most critical problems in the
image recognition area. One of the major challenges in this field is the
scarcity of labelled training data. Additionally, there is often class
imbalance in datasets as some cases are very rare to happen. As a result,
accuracy in classification task is normally low. Deep Learning models, in
particular, show promising results on image segmentation and classification
problems, but they require very large datasets for training. Therefore, there
is a need to generate more of synthetic samples from the same distribution.
Previous work has shown that feature generation is more efficient and leads to
better performance than corresponding image generation. We apply this idea in
the Medical Imaging domain. We use transfer learning to train a segmentation
model for the small dataset for which gold-standard class annotations are
available. We extracted the learnt features and use them to generate synthetic
features conditioned on class labels, using Auxiliary Classifier GAN (ACGAN).
We test the quality of the generated features in a downstream classification
task for brain tumors according to their severity level. Experimental results
show a promising result regarding the validity of these generated features and
their overall contribution to balancing the data and improving the
classification class-wise accuracy.
Related papers
- Unleashing the Potential of Synthetic Images: A Study on Histopathology Image Classification [0.12499537119440242]
Histopathology image classification is crucial for the accurate identification and diagnosis of various diseases.
We show that synthetic images can effectively augment existing datasets, ultimately improving the performance of the downstream histopathology image classification task.
arXiv Detail & Related papers (2024-09-24T12:02:55Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Information Gain Sampling for Active Learning in Medical Image
Classification [3.1619162190378787]
This work presents an information-theoretic active learning framework that guides the optimal selection of images from the unlabelled pool to be labeled.
Experiments are performed on two different medical image classification datasets.
arXiv Detail & Related papers (2022-08-01T16:25:53Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
We propose a novel medical image classification algorithm called Weakly-Supervised Generative Adversarial Networks (WSGAN)
WSGAN only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set.
We show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data.
arXiv Detail & Related papers (2021-11-29T15:38:48Z) - Enhancing Fine-Grained Classification for Low Resolution Images [97.82441158440527]
Low resolution images suffer from the inherent challenge of limited information content and the absence of fine details useful for sub-category classification.
This research proposes a novel attribute-assisted loss, which utilizes ancillary information to learn discriminative features for classification.
The proposed loss function enables a model to learn class-specific discriminative features, while incorporating attribute-level separability.
arXiv Detail & Related papers (2021-05-01T13:19:02Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.