Weakly-supervised Generative Adversarial Networks for medical image
classification
- URL: http://arxiv.org/abs/2111.14605v2
- Date: Tue, 30 Nov 2021 06:09:32 GMT
- Title: Weakly-supervised Generative Adversarial Networks for medical image
classification
- Authors: Jiawei Mao, Xuesong Yin, Yuanqi Chang, Qi Huang
- Abstract summary: We propose a novel medical image classification algorithm called Weakly-Supervised Generative Adversarial Networks (WSGAN)
WSGAN only uses a small number of real images without labels to generate fake images or mask images to enlarge the sample size of the training set.
We show that WSGAN can obtain relatively high learning performance by using few labeled and unlabeled data.
- Score: 1.479639149658596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly-supervised learning has become a popular technology in recent years.
In this paper, we propose a novel medical image classification algorithm,
called Weakly-Supervised Generative Adversarial Networks (WSGAN), which only
uses a small number of real images without labels to generate fake images or
mask images to enlarge the sample size of the training set. First, we combine
with MixMatch to generate pseudo labels for the fake images and unlabeled
images to do the classification. Second, contrastive learning and
self-attention mechanism are introduced into the proposed problem to enhance
the classification accuracy. Third, the problem of mode collapse is well
addressed by cyclic consistency loss. Finally, we design global and local
classifiers to complement each other with the key information needed for
classification. The experimental results on four medical image datasets show
that WSGAN can obtain relatively high learning performance by using few labeled
and unlabeled data. For example, the classification accuracy of WSGAN is 11%
higher than that of the second-ranked MIXMATCH with 100 labeled images and 1000
unlabeled images on the OCT dataset. In addition, we also conduct ablation
experiments to verify the effectiveness of our algorithm.
Related papers
- Data Augmentation using Feature Generation for Volumetric Medical Images [0.08594140167290097]
Medical image classification is one of the most critical problems in the image recognition area.
One of the major challenges in this field is the scarcity of labelled training data.
Deep Learning models, in particular, show promising results on image segmentation and classification problems.
arXiv Detail & Related papers (2022-09-28T13:46:24Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
In-vitro tests are an alternative to animal testing for the toxicity of medical devices.
Human fatigue plays a role in error making, making the use of deep learning appealing.
We propose Seamless Iterative Semi-Supervised correction of Imperfect labels (SISSI)
Our method successfully provides an adaptive early learning correction technique for object detection.
arXiv Detail & Related papers (2022-08-05T18:52:20Z) - Robust Medical Image Classification from Noisy Labeled Data with Global
and Local Representation Guided Co-training [73.60883490436956]
We propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification.
We employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples.
We also design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples.
arXiv Detail & Related papers (2022-05-10T07:50:08Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
We propose a mixed supervision learning framework for super high-resolution images.
During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning.
A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives.
arXiv Detail & Related papers (2021-07-02T09:46:06Z) - Self-Ensembling Contrastive Learning for Semi-Supervised Medical Image
Segmentation [6.889911520730388]
We aim to boost the performance of semi-supervised learning for medical image segmentation with limited labels.
We learn latent representations directly at feature-level by imposing contrastive loss on unlabeled images.
We conduct experiments on an MRI and a CT segmentation dataset and demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T03:27:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.